forked from memcached/memcached
-
Notifications
You must be signed in to change notification settings - Fork 0
/
crc32c.c
493 lines (437 loc) · 16.9 KB
/
crc32c.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
/* crc32c.c -- compute CRC-32C using the Intel crc32 instruction
* Copyright (C) 2013, 2015 Mark Adler
* Version 1.3 31 Dec 2015 Mark Adler
*/
/*
This software is provided 'as-is', without any express or implied
warranty. In no event will the author be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
Mark Adler
*/
/* Use hardware CRC instruction on Intel SSE 4.2 processors. This computes a
CRC-32C, *not* the CRC-32 used by Ethernet and zip, gzip, etc. A software
version is provided as a fall-back, as well as for speed comparisons. */
/* Version history:
1.0 10 Feb 2013 First version
1.1 1 Aug 2013 Correct comments on why three crc instructions in parallel
1.2 1 Nov 2015 Add const qualifier to avoid compiler warning
Load entire input into memory (test code)
Argument gives number of times to repeat (test code)
Argument < 0 forces software implementation (test code)
1.3 31 Dec 2015 Check for Intel architecture using compiler macro
Support big-endian processors in software calculation
Add header for external use
*/
#include <pthread.h>
#include "crc32c.h"
crc_func crc32c;
/* CRC-32C (iSCSI) polynomial in reversed bit order. */
#define POLY 0x82f63b78
uint32_t crc32c_sw_little(uint32_t crc, void const *buf, size_t len);
uint32_t crc32c_sw_big(uint32_t crc, void const *buf, size_t len);
#ifdef __x86_64__
/* Hardware CRC-32C for Intel and compatible processors. */
/* Multiply a matrix times a vector over the Galois field of two elements,
GF(2). Each element is a bit in an unsigned integer. mat must have at
least as many entries as the power of two for most significant one bit in
vec. */
static inline uint32_t gf2_matrix_times(uint32_t *mat, uint32_t vec) {
uint32_t sum = 0;
while (vec) {
if (vec & 1)
sum ^= *mat;
vec >>= 1;
mat++;
}
return sum;
}
/* Multiply a matrix by itself over GF(2). Both mat and square must have 32
rows. */
static inline void gf2_matrix_square(uint32_t *square, uint32_t *mat) {
for (unsigned n = 0; n < 32; n++)
square[n] = gf2_matrix_times(mat, mat[n]);
}
/* Construct an operator to apply len zeros to a crc. len must be a power of
two. If len is not a power of two, then the result is the same as for the
largest power of two less than len. The result for len == 0 is the same as
for len == 1. A version of this routine could be easily written for any
len, but that is not needed for this application. */
static void crc32c_zeros_op(uint32_t *even, size_t len) {
uint32_t odd[32]; /* odd-power-of-two zeros operator */
/* put operator for one zero bit in odd */
odd[0] = POLY; /* CRC-32C polynomial */
uint32_t row = 1;
for (unsigned n = 1; n < 32; n++) {
odd[n] = row;
row <<= 1;
}
/* put operator for two zero bits in even */
gf2_matrix_square(even, odd);
/* put operator for four zero bits in odd */
gf2_matrix_square(odd, even);
/* first square will put the operator for one zero byte (eight zero bits),
in even -- next square puts operator for two zero bytes in odd, and so
on, until len has been rotated down to zero */
do {
gf2_matrix_square(even, odd);
len >>= 1;
if (len == 0)
return;
gf2_matrix_square(odd, even);
len >>= 1;
} while (len);
/* answer ended up in odd -- copy to even */
for (unsigned n = 0; n < 32; n++)
even[n] = odd[n];
}
/* Take a length and build four lookup tables for applying the zeros operator
for that length, byte-by-byte on the operand. */
static void crc32c_zeros(uint32_t zeros[][256], size_t len) {
uint32_t op[32];
crc32c_zeros_op(op, len);
for (unsigned n = 0; n < 256; n++) {
zeros[0][n] = gf2_matrix_times(op, n);
zeros[1][n] = gf2_matrix_times(op, n << 8);
zeros[2][n] = gf2_matrix_times(op, n << 16);
zeros[3][n] = gf2_matrix_times(op, n << 24);
}
}
/* Apply the zeros operator table to crc. */
static inline uint32_t crc32c_shift(uint32_t zeros[][256], uint32_t crc) {
return zeros[0][crc & 0xff] ^ zeros[1][(crc >> 8) & 0xff] ^
zeros[2][(crc >> 16) & 0xff] ^ zeros[3][crc >> 24];
}
/* Block sizes for three-way parallel crc computation. LONG and SHORT must
both be powers of two. The associated string constants must be set
accordingly, for use in constructing the assembler instructions. */
#define LONG 8192
#define LONGx1 "8192"
#define LONGx2 "16384"
#define SHORT 256
#define SHORTx1 "256"
#define SHORTx2 "512"
/* Tables for hardware crc that shift a crc by LONG and SHORT zeros. */
static pthread_once_t crc32c_once_hw = PTHREAD_ONCE_INIT;
static uint32_t crc32c_long[4][256];
static uint32_t crc32c_short[4][256];
/* Initialize tables for shifting crcs. */
static void crc32c_init_hw(void) {
crc32c_zeros(crc32c_long, LONG);
crc32c_zeros(crc32c_short, SHORT);
}
/* Compute CRC-32C using the Intel hardware instruction. */
static uint32_t crc32c_hw(uint32_t crc, void const *buf, size_t len) {
/* populate shift tables the first time through */
pthread_once(&crc32c_once_hw, crc32c_init_hw);
/* pre-process the crc */
crc = ~crc;
uint64_t crc0 = crc; /* 64-bits for crc32q instruction */
/* compute the crc for up to seven leading bytes to bring the data pointer
to an eight-byte boundary */
unsigned char const *next = buf;
while (len && ((uintptr_t)next & 7) != 0) {
__asm__("crc32b\t" "(%1), %0"
: "=r"(crc0)
: "r"(next), "0"(crc0));
next++;
len--;
}
/* compute the crc on sets of LONG*3 bytes, executing three independent crc
instructions, each on LONG bytes -- this is optimized for the Nehalem,
Westmere, Sandy Bridge, and Ivy Bridge architectures, which have a
throughput of one crc per cycle, but a latency of three cycles */
while (len >= LONG*3) {
uint64_t crc1 = 0;
uint64_t crc2 = 0;
unsigned char const * const end = next + LONG;
do {
__asm__("crc32q\t" "(%3), %0\n\t"
"crc32q\t" LONGx1 "(%3), %1\n\t"
"crc32q\t" LONGx2 "(%3), %2"
: "=r"(crc0), "=r"(crc1), "=r"(crc2)
: "r"(next), "0"(crc0), "1"(crc1), "2"(crc2));
next += 8;
} while (next < end);
crc0 = crc32c_shift(crc32c_long, crc0) ^ crc1;
crc0 = crc32c_shift(crc32c_long, crc0) ^ crc2;
next += LONG*2;
len -= LONG*3;
}
/* do the same thing, but now on SHORT*3 blocks for the remaining data less
than a LONG*3 block */
while (len >= SHORT*3) {
uint64_t crc1 = 0;
uint64_t crc2 = 0;
unsigned char const * const end = next + SHORT;
do {
__asm__("crc32q\t" "(%3), %0\n\t"
"crc32q\t" SHORTx1 "(%3), %1\n\t"
"crc32q\t" SHORTx2 "(%3), %2"
: "=r"(crc0), "=r"(crc1), "=r"(crc2)
: "r"(next), "0"(crc0), "1"(crc1), "2"(crc2));
next += 8;
} while (next < end);
crc0 = crc32c_shift(crc32c_short, crc0) ^ crc1;
crc0 = crc32c_shift(crc32c_short, crc0) ^ crc2;
next += SHORT*2;
len -= SHORT*3;
}
/* compute the crc on the remaining eight-byte units less than a SHORT*3
block */
{
unsigned char const * const end = next + (len - (len & 7));
while (next < end) {
__asm__("crc32q\t" "(%1), %0"
: "=r"(crc0)
: "r"(next), "0"(crc0));
next += 8;
}
len &= 7;
}
/* compute the crc for up to seven trailing bytes */
while (len) {
__asm__("crc32b\t" "(%1), %0"
: "=r"(crc0)
: "r"(next), "0"(crc0));
next++;
len--;
}
/* return a post-processed crc */
return ~crc0;
}
/* Check for SSE 4.2. SSE 4.2 was first supported in Nehalem processors
introduced in November, 2008. This does not check for the existence of the
cpuid instruction itself, which was introduced on the 486SL in 1992, so this
will fail on earlier x86 processors. cpuid works on all Pentium and later
processors. */
#define SSE42(have) \
do { \
uint32_t eax, ecx; \
eax = 1; \
__asm__("cpuid" \
: "=c"(ecx) \
: "a"(eax) \
: "%ebx", "%edx"); \
(have) = (ecx >> 20) & 1; \
} while (0)
/* Compute a CRC-32C. If the crc32 instruction is available, use the hardware
version. Otherwise, use the software version. */
void crc32c_init(void) {
int sse42;
SSE42(sse42);
if (sse42) {
crc32c = crc32c_hw;
} else {
crc32c = crc32c_sw;
}
}
#elif defined(__aarch64__) && defined(__linux__)
#include <sys/auxv.h>
static inline uint32_t crc32cx(uint32_t crc, const uint64_t data)
{
asm(".arch_extension crc\n"
"crc32cx %w0, %w0, %x1" : "+r" (crc) : "r" (data));
return crc;
}
static inline uint32_t crc32cb(uint32_t crc, const uint8_t data)
{
asm(".arch_extension crc\n"
"crc32cb %w0, %w0, %w1" : "+r" (crc) : "r" (data));
return crc;
}
static uint32_t crc32c_hw(uint32_t crc, void const *buf, size_t len) {
crc = ~crc;
unsigned char const *next = buf;
while (((uintptr_t)next & 7) && len > 0) {
crc = crc32cb(crc, *(uint8_t *)next);
next++;
len--;
}
while (len >= 64) {
uint64_t *next8 = (uint64_t *)next;
crc = crc32cx(crc, next8[0]);
crc = crc32cx(crc, next8[1]);
crc = crc32cx(crc, next8[2]);
crc = crc32cx(crc, next8[3]);
crc = crc32cx(crc, next8[4]);
crc = crc32cx(crc, next8[5]);
crc = crc32cx(crc, next8[6]);
crc = crc32cx(crc, next8[7]);
next += 64;
len -= 64;
}
while (len >= 8) {
crc = crc32cx(crc, *(uint64_t *)next);
next += 8;
len -= 8;
}
while (len > 0) {
crc = crc32cb(crc, *(uint8_t *)next);
next++;
len--;
}
return ~crc;
}
void crc32c_init(void) {
uint64_t auxv = getauxval(AT_HWCAP);
crc32c = crc32c_sw;
if (auxv & HWCAP_CRC32)
crc32c = crc32c_hw;
}
#else /* !__x86_64__i && !__aarch64__ */
void crc32c_init(void) {
crc32c = crc32c_sw;
}
#endif
/* Construct table for software CRC-32C little-endian calculation. */
static pthread_once_t crc32c_once_little = PTHREAD_ONCE_INIT;
static uint32_t crc32c_table_little[8][256];
static void crc32c_init_sw_little(void) {
for (unsigned n = 0; n < 256; n++) {
uint32_t crc = n;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc32c_table_little[0][n] = crc;
}
for (unsigned n = 0; n < 256; n++) {
uint32_t crc = crc32c_table_little[0][n];
for (unsigned k = 1; k < 8; k++) {
crc = crc32c_table_little[0][crc & 0xff] ^ (crc >> 8);
crc32c_table_little[k][n] = crc;
}
}
}
/* Compute a CRC-32C in software assuming a little-endian architecture,
constructing the required table if that hasn't already been done. */
uint32_t crc32c_sw_little(uint32_t crc, void const *buf, size_t len) {
unsigned char const *next = buf;
pthread_once(&crc32c_once_little, crc32c_init_sw_little);
crc = ~crc;
while (len && ((uintptr_t)next & 7) != 0) {
crc = crc32c_table_little[0][(crc ^ *next++) & 0xff] ^ (crc >> 8);
len--;
}
if (len >= 8) {
uint64_t crcw = crc;
do {
crcw ^= *(uint64_t const *)next;
crcw = crc32c_table_little[7][crcw & 0xff] ^
crc32c_table_little[6][(crcw >> 8) & 0xff] ^
crc32c_table_little[5][(crcw >> 16) & 0xff] ^
crc32c_table_little[4][(crcw >> 24) & 0xff] ^
crc32c_table_little[3][(crcw >> 32) & 0xff] ^
crc32c_table_little[2][(crcw >> 40) & 0xff] ^
crc32c_table_little[1][(crcw >> 48) & 0xff] ^
crc32c_table_little[0][crcw >> 56];
next += 8;
len -= 8;
} while (len >= 8);
crc = crcw;
}
while (len) {
crc = crc32c_table_little[0][(crc ^ *next++) & 0xff] ^ (crc >> 8);
len--;
}
return ~crc;
}
/* Swap the bytes in a uint64_t. (Only for big-endian.) */
#if defined(__has_builtin) || (defined(__GNUC__) && \
(__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3)))
# define swap __builtin_bswap64
#else
static inline uint64_t swap(uint64_t x) {
x = ((x << 8) & 0xff00ff00ff00ff00) | ((x >> 8) & 0xff00ff00ff00ff);
x = ((x << 16) & 0xffff0000ffff0000) | ((x >> 16) & 0xffff0000ffff);
return (x << 32) | (x >> 32);
}
#endif
/* Construct tables for software CRC-32C big-endian calculation. */
static pthread_once_t crc32c_once_big = PTHREAD_ONCE_INIT;
static uint32_t crc32c_table_big_byte[256];
static uint64_t crc32c_table_big[8][256];
static void crc32c_init_sw_big(void) {
for (unsigned n = 0; n < 256; n++) {
uint32_t crc = n;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
crc32c_table_big_byte[n] = crc;
}
for (unsigned n = 0; n < 256; n++) {
uint32_t crc = crc32c_table_big_byte[n];
crc32c_table_big[0][n] = swap(crc);
for (unsigned k = 1; k < 8; k++) {
crc = crc32c_table_big_byte[crc & 0xff] ^ (crc >> 8);
crc32c_table_big[k][n] = swap(crc);
}
}
}
/* Compute a CRC-32C in software assuming a big-endian architecture,
constructing the required tables if that hasn't already been done. */
uint32_t crc32c_sw_big(uint32_t crc, void const *buf, size_t len) {
unsigned char const *next = buf;
pthread_once(&crc32c_once_big, crc32c_init_sw_big);
crc = ~crc;
while (len && ((uintptr_t)next & 7) != 0) {
crc = crc32c_table_big_byte[(crc ^ *next++) & 0xff] ^ (crc >> 8);
len--;
}
if (len >= 8) {
uint64_t crcw = swap(crc);
do {
crcw ^= *(uint64_t const *)next;
crcw = crc32c_table_big[0][crcw & 0xff] ^
crc32c_table_big[1][(crcw >> 8) & 0xff] ^
crc32c_table_big[2][(crcw >> 16) & 0xff] ^
crc32c_table_big[3][(crcw >> 24) & 0xff] ^
crc32c_table_big[4][(crcw >> 32) & 0xff] ^
crc32c_table_big[5][(crcw >> 40) & 0xff] ^
crc32c_table_big[6][(crcw >> 48) & 0xff] ^
crc32c_table_big[7][(crcw >> 56)];
next += 8;
len -= 8;
} while (len >= 8);
crc = swap(crcw);
}
while (len) {
crc = crc32c_table_big_byte[(crc ^ *next++) & 0xff] ^ (crc >> 8);
len--;
}
return ~crc;
}
/* Table-driven software CRC-32C. This is about 15 times slower than using the
hardware instructions. Determine the endianess of the processor and proceed
accordingly. Ideally the endianess will be determined at compile time, in
which case the unused functions and tables for the other endianess will be
removed by the optimizer. If not, then the proper routines and tables will
be used, even if the endianess is changed mid-stream. (Yes, there are
processors that permit that -- go figure.) */
uint32_t crc32c_sw(uint32_t crc, void const *buf, size_t len) {
static int const little = 1;
if (*(char const *)&little)
return crc32c_sw_little(crc, buf, len);
else
return crc32c_sw_big(crc, buf, len);
}