Skip to content

Latest commit

 

History

History
89 lines (66 loc) · 4.58 KB

README_cn.md

File metadata and controls

89 lines (66 loc) · 4.58 KB

简体中文 | English

BOT_SORT (BoT-SORT: Robust Associations Multi-Pedestrian Tracking)

内容

简介

BOT_SORT(BoT-SORT: Robust Associations Multi-Pedestrian Tracking)。此处提供了常用检测器的配置作为参考。由于训练数据集、输入尺度、训练epoch数、NMS阈值设置等的不同均会导致模型精度和性能的差异,请自行根据需求进行适配。

模型库

BOT_SORT在MOT-17 half Val Set上结果

检测训练数据集 检测器 输入尺度 检测mAP MOTA IDF1 配置文件
MOT-17 half train PP-YOLOE-l 640x640 52.7 55.5 64.2 配置文件

注意:

  • 模型权重下载链接在配置文件中的det_weights,运行验证的命令即可自动下载。

  • MOT17-half train是MOT17的train序列(共7个)每个视频的前一半帧的图片和标注组成的数据集,而为了验证精度可以都用MOT17-half val数据集去评估,它是每个视频的后一半帧组成的,数据集可以从此链接下载,并解压放在dataset/mot/文件夹下。

  • BOT_SORT的训练是单独的检测器训练MOT数据集,推理是组装跟踪器去评估MOT指标,单独的检测模型也可以评估检测指标。

  • BOT_SORT的导出部署,是单独导出检测模型,再组装跟踪器运行的,参照PP-Tracking

  • BOT_SORT是PP-Human和PP-Vehicle等Pipeline分析项目跟踪方向的主要方案,具体使用参照PipelineMOT

快速开始

1. 训练

通过如下命令一键式启动训练和评估

#单卡训练
CUDA_VISIBLE_DEVICES=0 python tools/train.py -c configs/mot/bytetrack/detector/ppyoloe_crn_l_36e_640x640_mot17half.yml --eval --amp

#多卡训练
python -m paddle.distributed.launch --log_dir=ppyoloe --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/mot/bytetrack/detector/ppyoloe_crn_l_36e_640x640_mot17half.yml --eval --amp

2. 评估

2.1 评估检测效果

CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/mot/bytetrack/detector/ppyoloe_crn_l_36e_640x640_mot17half.yml

注意:

  • 评估检测使用的是tools/eval.py, 评估跟踪使用的是tools/eval_mot.py

2.2 评估跟踪效果

CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/botsort/botsort_ppyoloe.yml --scaled=True

注意:

  • --scaled表示在模型输出结果的坐标是否已经是缩放回原图的,如果使用的检测模型是JDE YOLOv3则为False,如果使用通用检测模型则为True, 默认值是False。
  • 跟踪结果会存于{output_dir}/mot_results/中,里面每个视频序列对应一个txt,每个txt文件每行信息是frame,id,x1,y1,w,h,score,-1,-1,-1, 此外{output_dir}可通过--output_dir设置。

3. 导出预测模型

python tools/export_model.py -c configs/mot/bytetrack/detector/ppyoloe_crn_l_36e_640x640_mot17half.yml --output_dir=output_inference -o weights=https://bj.bcebos.com/v1/paddledet/models/mot/ppyoloe_crn_l_36e_640x640_mot17half.pdparams

4. 用导出的模型基于Python去预测

# 下载demo视频
wget https://bj.bcebos.com/v1/paddledet/data/mot/demo/mot17_demo.mp4

CUDA_VISIBLE_DEVICES=0 python deploy/pptracking/python/mot_sde_infer.py --model_dir=output_inference/ppyoloe_crn_l_36e_640x640_mot17half --tracker_config=deploy/pptracking/python/tracker_config.yml --video_file=mot17_demo.mp4 --device=GPU --threshold=0.5

注意:

  • 运行前需要手动修改tracker_config.yml的跟踪器类型为type: BOTSORTTracker
  • 跟踪模型是对视频进行预测,不支持单张图的预测,默认保存跟踪结果可视化后的视频,可添加--save_mot_txts(对每个视频保存一个txt)或--save_mot_txt_per_img(对每张图片保存一个txt)表示保存跟踪结果的txt文件,或--save_images表示保存跟踪结果可视化图片。
  • 跟踪结果txt文件每行信息是frame,id,x1,y1,w,h,score,-1,-1,-1

引用

@article{aharon2022bot,
  title={BoT-SORT: Robust Associations Multi-Pedestrian Tracking},
  author={Aharon, Nir and Orfaig, Roy and Bobrovsky, Ben-Zion},
  journal={arXiv preprint arXiv:2206.14651},
  year={2022}
}