-
Notifications
You must be signed in to change notification settings - Fork 27
/
opt_helper.py
688 lines (613 loc) · 21.5 KB
/
opt_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
# Copyright (c) 2022, salesforce.com, inc and MILA.
# All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
# For full license text, see the LICENSE file in the repo root
# or https://opensource.org/licenses/BSD-3-Clause
import os
from operator import mul, sub
import matplotlib.pyplot as plt
import numpy as np
from scipy.optimize import minimize
from sklearn import linear_model
default = {
"_RICE_CONSTANT": {
"xgamma": 0.3, # in CAP Eq 5 the capital elasticty
# A rice data
"xA_0": 0,
"xg_A": 0,
"xdelta_A": 0.0214976314392836,
# L
"xL_0": 1397.715000, # in POP population at the staring point
"xL_a": 1297.666000, # in POP the expected population at convergence
"xl_g": 0.04047275402855734, # in POP control the rate to converge
# K
"xK_0": 93.338152,
"xa_1": 0,
"xa_2": 0.00236,
"xa_3": 2,
# xsigma_0: 0.5201338309755572
"xsigma_0": 0.215,
}
}
def logdiff(List):
loglist = np.log(List)
return np.array([loglist[i + 1] - loglist[i] for i in range(len(List) - 1)])
def get_pop_lg(
data, Las, unit=1, stop_condition=0.0001, trim_start=0, trim_end=0, verbose=0
):
"""
@param country: str, the country code, e.g. "USA"
@param Las: dict, record the converged population, e.g. {"USA": 433850000}, unit: 1
@param unit: the calculation unit, e.g. 1000000 means milion
@param stop_condition: float or int, if int, it's the total step for the simulation;
if float, it's the tolerance as convergence condition for the simulation
@param verbose, can be 0, 1, or larger. verbose=0: only return the para,
=1: return the param and insample MAPE and plot them out,
=2: return the param and insample MAPE and run a simulation with stop_condition and plot them out
"""
def pop(ini, lg, la, stop_condition=0.0001):
pops = [ini]
if isinstance(stop_condition, int):
max_step = stop_condition
for i in range(max_step - 1):
pops.append(pops[-1] * ((1 + la) / (1 + pops[-1])) ** lg)
elif isinstance(stop_condition, float):
tol = stop_condition
while True:
pops.append(pops[-1] * ((1 + la) / (1 + pops[-1])) ** lg)
if pops[-1] / pops[-2] - 1 < tol:
break
return pops
La = Las / unit
dataList = np.array(data)
if trim_end == 0:
dataList = dataList[trim_start:]
else:
dataList = dataList[trim_start:trim_end]
Y = logdiff(dataList)
X = np.log(1 + La) - np.log(1 + dataList[:-1]).reshape(-1, 1)
reg = linear_model.LinearRegression(fit_intercept=False)
reg.fit(X, Y)
if verbose:
plt.plot(dataList, color="r", label="real data")
insample_est = []
tmp = dataList[0]
for i in range(len(dataList)):
insample_est.append(tmp)
tmp = tmp * ((1 + La) / (1 + tmp)) ** reg.coef_[0]
plt.plot(insample_est, color="b", label="est data")
if verbose > 1:
until_converge = pop(
dataList[0], reg.coef_[0], La, stop_condition=stop_condition
)
plt.plot(until_converge, color="g", label="est data")
return (
reg.coef_[0],
MAPE(dataList, insample_est),
insample_est,
until_converge,
)
else:
return reg.coef_[0], MAPE(dataList, insample_est)
return reg.coef_[0]
def get_gA_deltaA(
data,
delta=1,
stop_condition=0.0001,
rescale_unit=13.26,
delta_A_lower=0.005,
verbose=False,
):
def tfp(ini, params, delta=1, stop_condition=0.0001):
g_A, delta_A = params
tfps = [ini]
if isinstance(stop_condition, int):
max_step = stop_condition
for i in range(max_step - 1):
tfps.append(
tfps[-1]
* (
np.exp(0.0033)
+ g_A
* np.exp(-(delta_A**2 + delta_A_lower) * delta * len(tfps))
)
)
elif isinstance(stop_condition, float):
tol = stop_condition
while True:
tfps.append(
tfps[-1]
* (
np.exp(0.0033)
+ g_A
* np.exp(-(delta_A**2 + delta_A_lower) * delta * len(tfps))
)
)
if tfps[-1] / tfps[-2] - 1 < tol:
break
return tfps
data = np.array(data)
def target(x):
return sum(
np.square(
data[1:] / data[:-1]
- np.exp(0.0033)
- x[0]
* np.exp(
-(x[1] ** 2 + delta_A_lower)
* delta
* np.array(range(len(data) - 1))
)
)
)
x0 = np.array([0.01, 0.01])
res = minimize(
target, x0, method="nelder-mead", options={"xatol": 1e-8, "disp": True}
)
if verbose:
plt.plot(data, color="r", label="real data")
insample_est = []
tmp = data[0]
for i in range(len(data)):
insample_est.append(tmp)
tmp = tmp * (
np.exp(0.0033)
+ res.x[0] * np.exp(-(res.x[1] ** 2 + delta_A_lower) * delta * (i))
)
plt.plot(insample_est, color="b", label="est data")
if verbose > 1:
until_converge = tfp(data[0], res.x, delta=1, stop_condition=stop_condition)
plt.plot(until_converge, color="g", label="est data")
return (
[res.x[0], res.x[1] ** 2 + delta_A_lower],
res.fun,
MAPE(data, insample_est),
insample_est,
until_converge,
)
else:
return [res.x[0], res.x[1] ** 2 + delta_A_lower], res.fun
else:
return [res.x[0], res.x[1] ** 2 + delta_A_lower]
def write_yaml_files(pos_s, save_path, default_dict=default, ext=".yml"):
import os
import yaml
result = default_dict.copy()
for k, v in pos_s.items():
result["_RICE_CONSTANT"].update(v)
for x, y in result["_RICE_CONSTANT"].items():
if x in ["xa_1", "xa_3"]:
continue
result["_RICE_CONSTANT"][x] = float(y)
if not os.path.exists(save_path):
os.makedirs(save_path)
file_path = os.path.join(save_path, str(k) + ext)
with open(file_path, "w") as file:
yaml.dump(result, file)
def merge_region(Ai_s, Ki_s, Li_s, La_s, sigmai_s, gamma=0.3, mode="classic"):
"""
Ai_s, 2d-nparray, first dim is region, second dim is time, tfp
Ki_s, 2d-nparray, first dim is region, second dim is time, capital
Li_s, 2d-nparray, first dim is region, second dim is time, labor
La_s, 1d-nparray, the dim represents regions
sigmai_s, 1d-nparray, the dim represents regions
"""
assert mode in ["classic", "efficient"], "only support classic or efficient mode!"
assert (
len(Ai_s) == len(Ki_s) == len(Li_s) == len(La_s) == len(sigmai_s)
), "These lists much have the same length!"
Ai_s, Ki_s, Li_s, La_s, sigmai_s = (
np.array(Ai_s),
np.array(Ki_s),
np.array(Li_s),
np.array(La_s),
np.array(sigmai_s),
)
Yi_s = Ai_s * Ki_s**gamma * Li_s ** (1 - gamma)
N, T = Ai_s.shape
if mode == "classic":
Ks = np.sum(Ki_s, axis=0)
Ls = np.sum(Li_s, axis=0)
Las = np.sum(La_s)
Ys = np.sum(Yi_s, axis=0)
As = Ys / (Ks**gamma * Ls ** (1 - gamma))
sigmas = np.sum(Yi_s[:, -1] * sigmai_s) / Ys[-1]
elif mode == "efficient":
AKs = np.sum(Ai_s * Ki_s, axis=0)
ALs = np.sum(Ai_s * Li_s, axis=0)
Ai_s_sort = np.sort(Ai_s, axis=0)[::-1]
if N <= 3:
As = Ai_s_sort[0, :]
elif N <= 5:
As = np.mean(Ai_s_sort[0:2, :], axis=0)
else:
As = np.mean(Ai_s_sort[0:3, :], axis=0)
Ks = AKs / As
Ls = ALs / As
Las = np.sum(La_s) * Ls[-1] / sum(Li_s, axis=0)[-1]
sigmas = (
np.sum(
sigmai_s
* Ai_s[:, -1]
* Ki_s[:, -1] ** gamma
* Li_s[:, -1] ** (1 - gamma)
)
/ AKs[-1] ** gamma
* ALs[-1] ** (1 - gamma)
)
return As, Ks, Ls, Las, sigmas
def merge_region_dict(datadict, gamma=0.3, mode="classic"):
return merge_region(
datadict["TS_A"],
datadict["TS_K"],
datadict["TS_L"],
datadict["La_s"],
datadict["sigmai_s"],
gamma=0.3,
mode="classic",
)
def split_region(datadict, code, start, end, splits=[], gamma=0.3):
A, K, L = [], [], []
for i in range(start, end + 1):
A.append(datadict[code]["TS_A"][1]["YR" + str(i)])
K.append(datadict[code]["TS_K"][1]["YR" + str(i)])
L.append(datadict[code]["TS_L"][1]["YR" + str(i)])
A, K, L = np.array(A), np.array(K), np.array(L)
La = datadict[code]["La"]
Y = A * K**gamma * L ** (1 - gamma)
splits = np.array(splits)
if len(splits) == 0:
splits = np.random.rand(4)
if sum(splits) != 1:
splits = splits / sum(splits)
LEN = len(splits)
Ys = Y.reshape(1, -1)
Ys = np.repeat(Ys, LEN, axis=0)
for i in range(len(splits)):
Ys[i] = Ys[i] * splits[i]
Ls = L.reshape(1, -1)
Ls = np.repeat(Ls, LEN, axis=0)
for i in range(len(splits)):
Ls[i] = Ls[i] * splits[i]
multiplier = np.clip(np.exp(np.random.normal(0.5, 0.5, LEN)), 0.75, 2)
As = A.reshape(1, -1)
As = np.repeat(As, LEN, axis=0)
for i in range(len(multiplier)):
As[i] = As[i] * multiplier[i]
Ks = (Ys / (As * Ls ** (1 - gamma))) ** (1 / gamma)
Las = La * splits
return As, Ks, Ls, Las
def save(obj, filename):
import pickle
try:
from deepdiff import DeepDiff
except:
os.system("pip install deepdiff")
from deepdiff import DeepDiff
with open(filename, "wb") as file:
pickle.dump(obj, file, protocol=pickle.HIGHEST_PROTOCOL) # highest protocol
with open(filename, "rb") as file:
z = pickle.load(file)
assert (
DeepDiff(obj, z, ignore_string_case=True) == {}
), "there is something wrong with the saving process"
return
def load(filename):
# import pickle
import pickle5 as pickle # on Python 3.7
with open(filename, "rb") as file:
z = pickle.load(file)
return z
def get_mean_std(list_of_dict):
k = list_of_dict[0].keys()
v = [list(x.values()) for x in list_of_dict]
mean = [sum(x) / len(v) for x in zip(*v)]
demean = [list(map(sub, v[i], mean)) for i in range(len(v))]
muls = [list(map(mul, demean[i], demean[i])) for i in range(len(v))]
sqr = [sum(x) / len(v) for x in zip(*muls)]
sqrt = [np.sqrt(x) for x in sqr]
mean_dict = dict(zip(k, mean))
std_dict = dict(zip(k, sqrt))
return mean_dict, std_dict
def get_upper_lower_bounds(list_of_dict, n=1.96):
mean_dict, std_dict = get_mean_std(list_of_dict)
upper = {k: mean_dict[k] + n * std_dict[k] for k in mean_dict.keys()}
lower = {k: mean_dict[k] - n * std_dict[k] for k in mean_dict.keys()}
return upper, lower, mean_dict
def plot_fig_with_bounds(
variable,
y_label,
list_of_dict_off=None,
list_of_dict_on=None,
title=None,
idx=0,
x_label="year",
skips=3,
line_colors=["#0868ac", "#7e0018"],
region_colors=["#7bccc4", "#ffac3b"],
start=2020,
alpha=0.5,
is_grid=True,
is_save=True,
delta=5,
):
ax = plt.axes()
ax.spines["bottom"].set_color("#676767") # dark grey
ax.spines["top"].set_color("#676767")
ax.spines["right"].set_color("#676767")
ax.spines["left"].set_color("#676767")
year = np.array(range(len(list(list_of_dict_off[0].values())[0]))) * delta + start
if list_of_dict_off is not None:
upper_off, lower_off, mean_off = get_upper_lower_bounds(list_of_dict_off)
if idx == -1:
plt.plot(
year,
mean_off[variable][...],
label="no negotiation",
linestyle="--",
color=line_colors[0],
)
plt.fill_between(
year,
lower_off[variable][...],
upper_off[variable][...],
color=region_colors[0],
alpha=0.5,
)
else:
plt.plot(
year,
mean_off[variable][..., idx],
label="no negotiation",
linestyle="--",
color=line_colors[0],
)
plt.fill_between(
year,
lower_off[variable][..., idx],
upper_off[variable][..., idx],
color=region_colors[0],
alpha=0.5,
)
if list_of_dict_on is not None:
upper_on, lower_on, mean_on = get_upper_lower_bounds(list_of_dict_on)
if idx == -1:
plt.plot(
year,
mean_on[variable][...][::skips],
label="with negotiation",
color=line_colors[1],
)
plt.fill_between(
year,
lower_on[variable][...][::skips],
upper_on[variable][...][::skips],
color=region_colors[1],
alpha=0.5,
)
else:
plt.plot(
year,
mean_on[variable][..., idx][::skips],
label="with negotiation",
color=line_colors[1],
)
plt.fill_between(
year,
lower_on[variable][..., idx][::skips],
upper_on[variable][..., idx][::skips],
color=region_colors[1],
alpha=0.5,
)
plt.legend(loc=2)
if is_grid:
plt.grid(color="#d3d3d3") # light grey
plt.ylabel(y_label)
plt.xlabel("Year")
if title is not None:
plt.title(title)
if is_save:
plt.savefig("{}.pdf".format(title))
return
def plot_result(variable, nego_off=None, nego_on=None, k=0):
"""
variable can be a list of string or a single string.
When it is a string. It should be one of the list(nego_off.keys()) that one wants to show
nego_off and nego_on are dictionaries from the training results, in details
nego_off = trainer_off.fetch_episode_states(desired_outputs)
nego_on = trainer_on.fetch_episode_states(desired_outputs)
k is the index of the vectored variable that one wants to show, please keep it as 0 if
variable not in ["global_temperature", "global_carbon_mass"]
When it is a list of string. It should be a subset of list(nego_off.keys()) which includes
variables that one wants to show. It is equalvalent to iterate through the list of string and draw
each variable one by one.
"""
if isinstance(variable, list):
for i in range(len(variable)):
try:
plot_result(variable[i], nego_off=nego_off, nego_on=nego_on, k=k)
except:
print("Error:", variable[i])
else:
if variable not in ["global_temperature", "global_carbon_mass"]:
assert k == 0, f"There are only 1 variable record for {variable}"
if variable == "global_temperature":
assert k <= 1, f"There are only 2 variable records for global_temperature"
if variable == "global_carbon_mass":
assert k <= 2, f"There are only 3 variable records for global_carbon_mass"
fig, ax = plt.subplots(1, 1, figsize=(4, 4))
legends = []
if nego_off is not None:
ax.plot(nego_off[variable][..., k])
legends.append("nego_off")
if nego_on is not None:
ax.plot(nego_on[variable][..., k][::3])
legends.append("nego_on")
ax.legend(legends)
ax.grid()
ax.set_title(f"{variable}".replace("_", " ").title())
ax.set_xlabel("Steps")
ax.set_ylabel(variable)
return fig, ax
def plot_training_curve(
data, mertic, submission_file_name, start=None, end=None, return_data=False
):
"""
plotting mertics collected in a dictionary from the training procedure. Below are some of the available metrics:
mertics = ['Iterations Completed',
'VF loss coefficient',
'Entropy coefficient',
'Total loss',
'Policy loss',
'Value function loss',
'Mean rewards',
'Max. rewards',
'Min. rewards',
'Mean value function',
'Mean advantages',
'Mean (norm.) advantages',
'Mean (discounted) returns',
'Mean normalized returns',
'Mean entropy',
'Variance explained by the value function',
'Gradient norm',
'Learning rate',
'Mean episodic reward',
'Mean policy eval time per iter (ms)',
'Mean action sample time per iter (ms)',
'Mean env. step time per iter (ms)',
'Mean training time per iter (ms)',
'Mean total time per iter (ms)',
'Mean steps per sec (policy eval)',
'Mean steps per sec (action sample)',
'Mean steps per sec (env. step)',
'Mean steps per sec (training time)',
'Mean steps per sec (total)'
]
"""
fig, ax = plt.subplots(1, 1, figsize=(4, 4))
if data is None:
data = get_training_curve(submission_file_name)
if start is None:
start = 0
if end is None:
ax.plot(data["Iterations Completed"][start:], data[mertic][start:])
else:
ax.plot(data["Iterations Completed"][start:end], data[mertic][start:end])
ax.grid()
ax.set_xlabel("iteration")
ax.set_ylabel(mertic)
if return_data:
return fig, ax, data
else:
return fig, ax
def get_training_curve(submission_file_name):
"""
get the metrics collected in a dictionary from the training procedure from the zip submission file.
"""
import json
import shutil
import zipfile
if "zip" != submission_file_name.split(".")[-1]:
submission_file_name = submission_file_name + ".zip"
# path_ = os.path.join("./Submissions/", submission_file_name)
path_ = submission_file_name
assert os.path.exists(
path_
), f"This files is not available. Please check the path: {path_}."
with zipfile.ZipFile(path_, "r") as zip_ref:
# unzip_path = os.path.join(
# "./Submissions/", os.path.basename(path_).split(".")[0]
# )
unzip_path = path_[:-4]
if not os.path.exists(unzip_path):
os.makedirs(unzip_path)
zip_ref.extractall(unzip_path)
json_path = os.path.join(unzip_path, "results.json")
with open(json_path, "r", encoding="utf-8") as f:
json_data = [json.loads(line) for line in f]
shutil.rmtree(unzip_path)
l = len(json_data)
data = {}
for k in json_data[0].keys():
if isinstance(json_data[0][k], (int, float)):
data[k] = [json_data[i][k] for i in range(l)]
elif isinstance(json_data[0][k], dict):
for k_ in json_data[0][k].keys():
data[k_] = [json_data[i][k][k_] for i in range(l)]
return data
def make_grid_plot(
matrix_time_by_feature,
feature_label="",
xlabel="Year",
ylabel="Value",
cols=4,
fig_scale=4,
):
"""
Creates a matplotlib grid plot that plots each time series for each region.
"""
timesteps, n_features = matrix_time_by_feature.shape
rows = n_features // cols + 1
fig, axes = plt.subplots(
rows,
cols,
figsize=(fig_scale * cols, fig_scale * rows),
squeeze=False,
sharey=True,
)
idx = 0
print(f"Plotting for {n_features} features")
for col in range(cols):
if idx >= n_features:
break
for row in range(rows):
ax = axes[row, col]
ax.plot(matrix_time_by_feature[:, idx])
ax.set_title(f"{feature_label} {idx}")
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
ax.grid()
idx += 1
if idx >= n_features:
break
fig.tight_layout()
return fig
def make_aggregate_data_across_three_groups(
data_ts, group_1, group_2, group_3, n_steps=61, n_features=27
):
n_groups = 3 # feature indices as defined in group_1, group_2, group_3
aggregate_ts = dict()
for key, value in data_ts.items():
if value.shape == (n_steps, n_features):
lo_data = value[:, group_1]
med_data = value[:, group_2]
hi_data = value[:, group_3]
_aggregate_data = np.zeros((n_steps, n_groups))
_aggregate_data[:, 0] = np.mean(lo_data, axis=1)
_aggregate_data[:, 1] = np.mean(med_data, axis=1)
_aggregate_data[:, 2] = np.mean(hi_data, axis=1)
aggregate_ts[key] = _aggregate_data
return aggregate_ts
def compute_correlation_across_groups(
aggregate_stats_across_groups,
data_ts,
feature_name,
do_plot=False,
):
all_x = []
all_y = []
for group_idx, group in enumerate(groups):
var_x = aggregate_stats_across_groups[::3, group_idx].mean()
var_y = (
data_ts[feature_name][::3, group]
.sum(axis=0, keepdims=True)
.mean(axis=1, keepdims=True)
)
all_x.append(var_x)
all_y.append(var_y[0, 0])
if do_plot:
plt.scatter(all_x, all_y)
"""Give the correlation r2 between var_x and var_y"""
r2 = np.corrcoef(all_x, all_y)[0, 1] ** 2
return r2