-
Notifications
You must be signed in to change notification settings - Fork 90
/
mm_100.html
794 lines (649 loc) · 30.6 KB
/
mm_100.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"https://www.w3.org/TR/html4/loose.dtd">
<!--
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"https://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="https://www.w3.org/1999/xhtml">
-->
<head>
<!-- improve mobile display -->
<META NAME="viewport" CONTENT="width=device-width, initial-scale=1.0">
<title>Metamath 100</title>
<!--
<link type="text/css" rel="stylesheet"
href="metamath_100_files/banner-styles.css">
<link type="text/css" rel="stylesheet"
href="xdtmp/wiki.css">
<link href="metamath_100_files/toolbar.css" type="text/css"
rel="stylesheet">
<link rel="alternate"
type="application/wiki" title="Edit this page"
href="http://wiki.planetmath.org/cgi-bin/wiki.pl?action=edit;id=metamath_100">
<meta name="robots"
content="INDEX,FOLLOW"><link rel="alternate" type="application/rss+xml"
title="AsteroidMeta"
href="http://wiki.planetmath.org/cgi-bin/wiki.pl?action=rss">
<link rel="alternate" type="application/rss+xml" title="AsteroidMeta:
metamath_100"
href="http://wiki.planetmath.org/cgi-bin/wiki.pl?action=rss;rcidonly=metamath_100">
-->
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
</head>
<body class="http://wiki.planetmath.org/cgi-bin/wiki.pl">
<!--
<div class="" id="wm-ipp" style="display: block;" lang="en">
-->
<!--
<div class="header"><span class="gotobar bar"><a class="local"
href="http://wiki.planetmath.org/cgi-bin/wiki.pl/HomePage">HomePage</a>
<a class="local"
href="http://wiki.planetmath.org/cgi-bin/wiki.pl/RecentChanges">RecentChanges</a>
</span><h1><a title="Click to search for references to this page"
href="http://wiki.planetmath.org/cgi-bin/wiki.pl?search=%22metamath+100%22">metamath
100</a></h1></div><div class="wrapper">
<div class="content browse"><p>
-->
<TABLE BORDER=0 WIDTH="100%"><TR>
<!-- ...TD style="line-height:100%"... -->
<TD NOWRAP ALIGN=LEFT VALIGN=MIDDLE WIDTH="25%"> <FONT SIZE=-2
FACE=arial><A HREF="../index.html"><IMG SRC="mm.gif" BORDER=0
ALT="Home" HEIGHT=32 WIDTH=32 ALIGN=LEFT><IMG SRC="spacer.gif" BORDER=0
ALT="" HEIGHT=32 WIDTH=1 ALIGN=LEFT>Metamath<BR>Home</A></FONT></TD>
<TD NOWRAP ALIGN=CENTER VALIGN=MIDDLE><FONT SIZE="+3"
COLOR="#006633"><B>Metamath 100</B></FONT></TD>
<TD WIDTH="25%"> </TD>
</TR></TABLE>
<HR NOSHADE SIZE=1>
<CENTER>
<B><FONT COLOR="#006633">Created by David A. Wheeler</FONT></B>
</CENTER>
<HR NOSHADE SIZE=1>
<p><a href="http://www.cs.ru.nl/%7Efreek/100/">"Formalizing 100
Theorems" by Freek Wiedijk</a> lists 100 mathematical theorems and the
various systems that have formalized a nontrivial number of them. This
list is discussed in <a
href="http://www.ams.org/notices/200811/tx081101408p.pdf">"Formal Proof
- Getting Started" (Freek Wiedijk, Notices of the AMS, Volume 55, Number
11, December 2008)</a>. Rightly or wrongly, this list is used by others
to judge proof systems. Wiedijk's "getting started" picks as its
primary examples HOL Light and Mizar, which at the time had the largest
number of proofs. Similarly, <a
href="http://www.cs.sjsu.edu/faculty/beeson/Masters/KamThesis.pdf">"Case
Studies in Proof Checking" by Robert C. Kam</a> says, "Judging by Dr.
Wiedijk's Formalizing 100 Theorems list, which gives an overview of the
headway various proof systems have made in mathematics, Coq and Mizar
are two of the most successful systems in use today (Wiedijk,
2007)".</p>
<p>Currently there are <b>74</b> proofs proven by Metamath from this list of
100. As of 2020-04-05 this number of proofs is more than
Coq (70), Mizar (69),
ProofPower (43), Lean (29),
PVS (22), nqthm/ACL2 (18), and NuPRL/MetaPRL (8);
it is short of only Isabelle (83) and HOL Light (86).
This is very good, especially considering that there had been no significant
effort until 2014 to prove theorems from this list of 100 using Metamath.
In this page, you can see the
<a href="#done">completed Metamath proofs</a> and the
<a href="#todo">Metamath proofs to be done</a> from this list of
metamath proofs.
</p>
<p>Like all Metamath proofs, all reasoning is done directly in the
proof itself rather than by algorithms embedded in the verification
program. As a result, the proofs are completely transparent with
nothing hidden from the user, and every step can be followed through a
hyperlink to its corresponding proof or definition.
Therefore, the Metamath Proof Explorer (MPE aka set.mm) database
is the <i>largest</i> database of formally-verified mathematics
that records every step of a proof by directly
referring to only an axiom or previous proof
(many competing databases only record tactics that are
intended to rediscover the proof, instead of recording
the specific proven steps actually used in the proof).
</p>
<p>
The theorems in MPE are routinely verified by 5 different programs
written in 5 different programming languages by more than 5 different people.
These are the
original metamath (a C verifier by Norm Megill),
mmj2 (a Java verifier by Mel O'Cat and Mario Carneiro),
smetamath-rs (a high-speed Rust verifier by Stefan O'Rear),
checkmm (a C++ verifier by Eric Schmidt), and
mmverify (a Python verifier by Raph Levien).
This checking by multiple independent verifiers in different languages
provides very strong justification for believing
that the proofs are correct.
</p>
<p>
What's more, all of
the proofs listed here are current and verified with the current
versions of Metamath tools.
This is not the case with some
other systems, where older proofs have not always been kept synchronized
with the current system and thus have become essentially lost.
</p>
<!--
This is different from some other systems.
For example, Isabelle's proof of the prime number theorem was done in
Isabelle2005, and it was not kept up in the Isabelle AFP (its archive of
formal proofs), so its proof is uncheckable with current tools and
essentially lost.
-->
<p>
Since the kernel of Metamath is extremely small and rarely changes, the
underlying Metamath language (as implemented by over a dozen
independently-written verifiers) is very stable over time
and can be verified very rapidly.
The entire
content of <A HREF="index.html#mmprog">set.mm</A>
set theory database can be verified in less than 5 sec
with the <A HREF="index.html#mmprog">metamath program</A> and in 0.7 sec
with a recent version of Stefan O'Rear's <A
HREF="other.html#smm">smm3</A> verifier that utilizes multiple CPU
cores. As of June 2016, altogether
the theorems listed here ultimately make use of
12151 of the 28366 theorems in set.mm for their full derivation from ZFC
axioms. (This doesn't mean that 12151 theorems are dedicated to the
theorems on this list. Most are library-type theorems shared
by many other theorems; for
example, many of the theorems on this list
depend on the complex number construction, which itself
involves 3014 theorems to derive starting from the ZFC axioms.)</p>
<p>
<a
href="https://docs.google.com/spreadsheets/d/1jcLOp_jF4sPrVPdPedL_ZWebXp8oYEQOSmbWb168YHE"
>Some graphs showing Metamath 100 progress are available on another page</a>
(click the Authors tab for a pie chart).
You can also see a
<a href="https://www.youtube.com/watch?v=LVGSeDjWzUo">Gource Visualization of
the growth of the Metamath Proof Explorer (MPE / set.mm) database of proofs</a>.
</p>
<p id="done">Here is the list of the <a
href="https://us.metamath.org/">Metamath</a> proofs that are available
from this list of 100, along with credit to the individual(s) who
created the Metamath formalization.
Almost all of these proofs are from the <a
href="https://us.metamath.org/mpeuni/mmset.html">Metamath Proof Explorer</a>,
aka database set.mm, which is based on classical logic.
However, there are some proofs available in the <a
href="https://us.metamath.org/ileuni/mmil.html">Intuitionistic Logic Explorer</a>,
aka database iset.mm, which uses intuitionistic logic instead.
Please let us know about missing entries via
<a href="https://github.com/metamath/set.mm">github issue</a> or the
<a
href="https://groups.google.com/group/metamath">Metamath mailing list</a>.
<p><a name="developers"></a><font size=-1>Note for potential
contributors: The development tools most people use, in addition to a
good text editor, are <a href="index.html#mmj2">mmj2</a> (which has an
introductory video) and the <a href="index.html#mmprog">metamath
program</A> (which has a tutorial in Chapter 2 of the <A
HREF="index.html#book"><i>Metamath</i></a> book). Most contributors
keep their work in progress in private sections of set.mm called
"mathboxes" to prevent interfering with others' work. Mathboxes can be
updated via a <a
href="https://github.com/metamath/set.mm/tree/develop">GitHub</a> pull
request and will later be moved to the main part of set.mm
as appropriate. Requests for help on the <a
href="https://groups.google.com/group/metamath">Metamath mailing list</a>
can help things go smoother. See the <a
href="mpeuni/mmrecent.html">Most Recent Proofs</a> page for recent
announcements.</font></p>
<ul>
<!-- 5th added to list -->
<li><a name="1">1</a>. The Irrationality of the Square Root of 2 (<a
href="mpeuni/sqrt2irr.html">sqrt2irr</a>, by Norman Megill, 2001-08-20).
The intuitionistic logic explorer (iset.mm) database also includes <a
href="https://us.metamath.org/ileuni/sqrt2irrap.html">sqrt2irrap</a>
(by Jim Kingdon, 2022-02-01).</li>
</li>
<!-- 37th added to list -->
<li><a name="2">2</a>. The Fundamental Theorem of Algebra (<a
href="mpeuni/fta.html">fta</a>,
by Mario Carneiro, 2014-09-15)</li>
<!-- 19th added to list -->
<li><a name="3">3</a>. The Denumerability of the Rational Numbers (<a
href="mpeuni/qnnen.html">qnnen</a>,
by Norman Megill, 2004-07-31,
revised by Mario Carneiro, 2013-03-03).
The intuitionistic logic explorer (iset.mm) database also includes <a
href="https://us.metamath.org/ileuni/qnnen.html">qnnen</a>
(by Jim Kingdon, 2023-08-11)</li>
<!-- 15th added to list -->
<li><a name="4">4</a>. Pythagorean Theorem (<a
href="mpeuni/cphpyth.html">cphpyth</a>, by Norman Megill, 2008-04-17)</li>
<!-- 58th added to list -->
<li><a name="5">5</a>. The Prime Number Theorem (<a
href="mpeuni/pnt.html">pnt</a>, by Mario Carneiro, 2016-06-01) - also see
<a href="mpeuni/pnt2.html">pnt2</a>, <a href="mpeuni/pnt3.html">pnt3</a></li>
<!-- 53rd added to list -->
<li><a name="7">7</a>. Law of Quadratic Reciprocity (<a
href="mpeuni/lgsquad.html">lgsquad</a>, by Mario Carneiro, 2015-06-19)</li>
<!-- 66th added to list -->
<li><a name="9">9</a>. The Area of a Circle (<a
href="https://us.metamath.org/mpeuni/areacirc.html">areacirc</a>,
by Brendan Leahy, 2017-08-31)</li>
<!-- 21st added to list -->
<li><a name="10">10</a>. Euler's Generalization of Fermat's Little Theorem (<a
href="mpeuni/eulerth.html">eulerth</a>, by Mario Carneiro,
2014-02-28). The intuitionistic logic explorer (iset.mm) database also includes <a
href="https://us.metamath.org/ileuni/eulerth.html">eulerth</a>
(by Jim Kingdon, 2024-09-07)</li>
<!-- 8th added to list -->
<li><a name="11">11</a>. The Infinitude of Primes (<a
href="mpeuni/infpn2.html">infpn2</a>, by Norman Megill, 2005-05-05).
The intuitionistic logic explorer (iset.mm) database also includes <a
href="https://us.metamath.org/ileuni/infpn2.html">infpn2</a>
(by Jim Kingdon, 2024-10-26)</li>
<!-- 33rd added to list -->
<li><a name="14">14</a>. Euler's Summation of 1 + (1/2)^2 + (1/3)^2 + .... (<a
href="mpeuni/basel.html">basel</a>, by Mario Carneiro,
2014-07-30)</li>
<!-- 35th added to list -->
<li><a name="15">15</a>. The Fundamental Theorem of Integral
Calculus (<a
href="mpeuni/ftc1.html">ftc1</a> and <a
href="mpeuni/ftc2.html">ftc2</a>,
by Mario Carneiro, 2014-09-03)</li>
<!-- 11th added to list -->
<li><a name="17">17</a>. De Moivre's Theorem (<a
href="mpeuni/demoivreALT.html">demoivreALT</a>, by Steve Rodriguez, 2006-11-10).
See also the later proof <a
href="mpeuni/demoivre.html">demoivre</a> (by Norman Megill, 2007-07-24),
which is shorter and more general but uses the exponential function.
The intuitionistic logic explorer (iset.mm) database includes both proofs
as <a href="https://us.metamath.org/ileuni/demoivreALT.html">demoivreALT</a>
and <a href="https://us.metamath.org/ileuni/demoivre.html">demoivre</a>
(added 2023-01-04).</li>
<!-- 40th added to list -->
<li><a name="18">18</a>. Liouville's Theorem and the Construction
of Transcendental Numbers (<a
href="mpeuni/aaliou.html">aaliou</a>,
by Stefan O'Rear, 2014-11-22)</li>
<!-- 31st added to list -->
<li><a name="19">19</a>. Four Squares Theorem (<a
href="mpeuni/4sq.html">4sq</a>,
by Mario Carneiro, 2014-07-16)</li>
<!-- 54th added to list -->
<li><a name="20">20</a>. All Primes (1 mod 4) Equal the Sum of Two Squares (<a
href="mpeuni/2sq.html">2sq</a>, by Mario Carneiro, 2015-06-20)</li>
<!-- 7th added to list -->
<li><a name="22">22</a>. The Non-Denumerability of the Continuum (<a
href="mpeuni/ruc.html">ruc</a>, by Norman Megill, 2004-08-13)</li>
<!-- 23rd added to list -->
<li><a name="23">23</a>. Formula for Pythagorean Triples (<a
href="mpeuni/pythagtrip.html">pythagtrip</a>, by Scott Fenton, 2014-04-19).
The intuitionistic logic explorer (iset.mm) database also includes <a
href="https://us.metamath.org/ileuni/pythagtrip.html">pythagtrip</a>
(added by Jim Kingdon, 2024-10-04).</li>
<!-- 3rd added to list -->
<li><a name="25">25</a>. Schroeder-Bernstein Theorem (<a
href="mpeuni/sbth.html">sbth</a>, by Norman Megill, 1998-06-08).
The intuitionistic logic explorer (iset.mm) database shows that
Schroeder-Bernstein is equivalent to excluded middle, resolving
this problem in the negative, at <a
href="https://us.metamath.org/ileuni/exmidsbth.html">exmidsbth</a>
(by Jim Kingdon, 2022-08-13).</li>
<!-- 45th added to list -->
<li><a name="26">26</a>. Leibniz' Series for Pi (<a
href="mpeuni/leibpi.html">leibpi</a>,
by Mario Carneiro, 2015-04-16)</li>
<!-- 38th added to list -->
<li><a name="27">27</a>. Sum of the Angles of a Triangle (<a
href="mpeuni/ang180.html">ang180</a>,
by Mario Carneiro, 2014-09-24)</li>
<!-- 63rd added to list -->
<li><a name="30">30</a>. The Ballot Problem (aka Bertrand's ballot problem)
(<a href="mpeuni/ballotth.html">ballotth</a>,
by Thierry Arnoux, contributed 2016-12-07)</li>
<!-- 48th added to list -->
<li><a name="31">31</a>. Ramsey's Theorem (<a
href="mpeuni/ramsey.html">ramsey</a>,
by Mario Carneiro, 2015-04-23)</li>
<!-- 27th added to list -->
<li><a name="34">34</a>. Divergence of the Harmonic Series (<a
href="mpeuni/harmonic.html">harmonic</a>, by Mario Carneiro, 2014-07-11)</li>
<!-- 60th added to list -->
<li><a name="35">35</a>. Taylor's Theorem (<a
href="mpeuni/taylth.html">taylth</a>, by Mario Carneiro, 2017-01-01)</li>
<!-- 49th added to list -->
<li><a name="37">37</a>. The Solution of a Cubic (<a
href="mpeuni/cubic.html">cubic</a>,
by Mario Carneiro, 2015-04-26)</li>
<!-- 55th added to list -->
<li><a name="38">38</a>. Arithmetic Mean/Geometric Mean (<a
href="mpeuni/amgm.html">amgm</a>,
by Mario Carneiro, 2015-06-21)</li>
<!-- 39th added to list -->
<li><a name="39">39</a>. Solutions to Pell's Equation (<a
href="mpeuni/rmxycomplete.html">rmxycomplete</a>,
by Stefan O'Rear, 2014-11-22)</li>
<!-- 24th added to list -->
<li><a name="42">42</a>. Sum of the Reciprocals of the Triangular Numbers (<a
href="mpeuni/trirecip.html">trirecip</a>, by Scott Fenton,
2014-05-02).
The intuitionistic logic explorer (iset.mm) database includes this proof
as <a href="https://us.metamath.org/ileuni/trirecip.html">trirecip</a>
(added 2022-10-22).</li>
<!-- 9th added to list -->
<li><a name="44">44</a>. The Binomial Theorem (<a
href="mpeuni/binom.html">binom</a>, Norman Megill, 2005-12-07).
The intuitionistic logic explorer (iset.mm) database includes this proof
as <a href="https://us.metamath.org/ileuni/binom.html">binom</a>
(added 2022-10-15).</li>
<!-- 68th added to list -->
<li><a name="45">45</a>. The Partition Theorem (by Euler) (<a
href="mpeuni/eulerpart.html">eulerpart</a>, Thierry Arnoux, 2018-08-30)</li>
<!-- 50th added to list -->
<li><a name="46">46</a>. The Solution of the General Quartic Equation (<a
href="mpeuni/quart.html">quart</a>,
by Mario Carneiro, 2015-05-06)</li>
<!-- 56th added to list -->
<li><a name="48">48</a>. Dirichlet's Theorem (<a
href="mpeuni/dirith.html">dirith</a>,
by Mario Carneiro, 2016-05-12)</li>
<!-- 72nd added to list -->
<li><a name="49">49</a>. The Cayley-Hamilton Theorem (<a
href="mpeuni/cayleyhamilton.html">cayleyhamilton</a>,
by Alexander van der Vekens, 2019-11-25)</li>
<!-- 42th added to list -->
<li><a name="51">51</a>. Wilson's Theorem (<a
href="mpeuni/wilth.html">wilth</a>,
by Mario Carneiro, 2015-01-28)</li>
<!-- 6th added to list -->
<li><a name="52">52</a>. The Number of Subsets of a Set (<a
href="mpeuni/pw2en.html">pw2en</a>, by Norman Megill, 2004-01-29)</li>
<!-- 46th added to list -->
<li><a name="54">54</a>. The Konigsberg Bridge Problem (<a
href="mpeuni/konigsberg.html">konigsberg</a>,
by Mario Carneiro, 2015-04-16)</li>
<!-- 62nd added to list -->
<li><a name="55">55</a>. Product of Segments of Chords (<a
href="mpeuni/chordthm.html">chordthm</a>
by David Moews, 2017-02-28)</li>
<!-- 71st added to list -->
<li><a name="57">57</a>. Heron's Formula (<a
href="mpeuni/heron.html">heron</a>
by Mario Carneiro based on work by Jon Pennant and Thierry Arnoux,
2019-03-10)</li>
<!-- 29th added to list -->
<li><a name="58">58</a>. Formula for the Number of Combinations (<a
href="mpeuni/hashbc.html">hashbc</a>, by Mario Carneiro, 2014-07-13)</li>
<!-- 20th added to list -->
<li><a name="60">60</a>. Bezout's Theorem (<a
href="mpeuni/bezout.html">bezout</a>, by Mario Carneiro, 2014-02-22).
The intuitionistic logic explorer (iset.mm) database also includes <a
href="https://us.metamath.org/ileuni/bezout.html">bezout</a>
(by Mario Carneiro and Jim Kingdon, 2022-01-09).</li>
<!-- 67th added to list -->
<li><a name="61">61</a>. Theorem of Ceva (<a
href="mpeuni/cevath.html">cevath</a>, by
Saveliy Skresanov, 2017-09-24)</li>
<!-- 1st added to list -->
<li><a name="63">63</a>. Cantor's Theorem (<a
href="mpeuni/canth2.html">canth2</a>, by Norman Megill, 1994-08-07)</li>
<!-- 59th added to list -->
<li><a name="64">64</a>. L'Hôpital's Rule (<a
href="mpeuni/lhop.html">lhop</a>, by Mario Carneiro, 2016-12-30)</li>
<!-- 61st added to list -->
<li><a name="65">65</a>. Isosceles Triangle Theorem (<a
href="https://us.metamath.org/mpeuni/isosctr.html">isosctr</a>,
by Saveliy Skresanov, 2017-01-01)</li>
<!-- 10th added to list -->
<li><a name="66">66</a>. Sum of a Geometric Series (<a
href="mpeuni/geoser.html">geoser</a>, by Norman Megill, 2006-05-09).
The intuitionistic logic explorer (iset.mm) database includes this proof
as <a href="https://us.metamath.org/ileuni/geoserap.html">geoserap</a>
(added 2022-10-24).</li>
<!-- 74th added to list -->
<li><a name="67">67</a>. <i>e</i> is Transcendental (<a
href="mpeuni/etransc.html">etransc</a>, by Glauco Siliprandi, 2020-04-05)</li>
<!-- 12th added to list -->
<!-- Note: arisum was originally named fnsmnt -->
<li><a name="68">68</a>. Sum of an arithmetic series (<a
href="mpeuni/arisum.html">arisum</a>, by Frédéric Liné, 2006-11-16) - arisum
is not fully general, but it would be straightforward to enhance.
The intuitionistic logic explorer (iset.mm) database includes this proof
as <a href="https://us.metamath.org/ileuni/arisum.html">arisum</a>
(added 2022-10-22).</li>
<!-- 16th added to list -->
<li><a name="69">69</a>. Greatest Common Divisor Algorithm (<a
href="mpeuni/eucalg.html">eucalg</a>, by Paul Chapman, 2011-03-31).
The intuitionistic logic explorer (iset.mm) database includes this proof
as <a
href="https://us.metamath.org/ileuni/eucalg.html">eucalg</a>
(by Jim Kingdon, 2022-01-11).</li>
<!-- 57th added to list -->
<li><a name="70">70</a>. The Perfect Number Theorem (<a
href="mpeuni/perfect.html">perfect</a>, by Mario Carneiro, 2016-05-17)</li>
<!-- 28th added to list -->
<li><a name="71">71</a>. Order of a Subgroup (<a
href="mpeuni/lagsubg.html">lagsubg</a>, by Mario Carneiro, 2014-07-11) -
also see <a href="mpeuni/lagsubg2.html">lagsubg2</a></li>
<!-- 41st added to list -->
<li><a name="72">72</a>. Sylow's Theorem (<a
href="mpeuni/sylow1.html">sylow1</a> and <a
href="mpeuni/sylow2.html">sylow2</a> and <a
href="mpeuni/sylow2b.html">sylow2b</a> and <a
href="mpeuni/sylow3.html">sylow3</a>,
by Mario Carneiro, 2015-01-19)</li>
<!-- 43rd added to list -->
<li><a name="73">73</a>. Ascending or Descending Sequences (<a
href="mpeuni/erdsze.html">erdsze</a> and <a
href="mpeuni/erdsze2.html">erdsze2</a>,
by Mario Carneiro, 2015-01-28)</li>
<!-- 2nd added to list -->
<li><a name="74">74</a>. The Principle of Mathematical Induction (<a
href="mpeuni/finds.html">finds</a>, by Norman Megill, 1995-04-14).
There are many versions of Mathematical Induction in set.mm. Theorem <a
href="mpeuni/findes.html">findes</a> (by Raph Levien, 2003-07-09)
is a compact and more traditional-looking version with explicit substitution.
Another alternative is <a
href="mpeuni/nnind.html">nnind</a> (by Norman Megill, 1997-01-10),
which uses natural numbers instead of ordinal numbers and might be
less obscure for non-mathematicians.
The intuitionistic logic explorer (iset.mm) database also includes <a
href="https://us.metamath.org/ileuni/finds.html">finds</a>
(adapted from Norman Megill's set.mm proof by Jim Kingdon, 2018-12-01)
proved from IZF (intuitionistic Zermelo--Fraenkel) and <a
href="https://us.metamath.org/ileuni/bj-findes.html">bj-findes</a>
(by Benoit Jubin, 2019-11-21) proved from CZF (constructive
Zermelo--Fraenkel).
</li>
<!-- 36th added to list -->
<li><a name="75">75</a>. The Mean Value Theorem (<a
href="mpeuni/mvth.html">mvth</a>,
by Mario Carneiro, 2014-09-14)</li>
<!-- 73rd added to list -->
<li><a name="76">76</a>. Fourier Series (<a
href="mpeuni/fourier.html">fourier</a>,
by Glauco Siliprandi, 2019-12-11)</li>
<!-- 25th added to list -->
<li><a name="77">77</a>. Sum of kth powers (<a
href="mpeuni/fsumkthpow.html">fsumkthpow</a>, by Scott Fenton, 2014-05-16)</li>
<!-- 13th added to list -->
<li><a name="78">78</a>. The Cauchy-Schwarz Inequality (<a
href="mpeuni/ipcau.html">ipcau</a>, by Norman Megill, 2008-01-12)</li>
<!-- 14th added to list -->
<li><a name="79">79</a>. The Intermediate Value Theorem (<a
href="mpeuni/ivth.html">ivth</a>, by Paul Chapman, 2008-01-22).
The intuitionistic logic explorer (iset.mm) database also includes <a
href="https://us.metamath.org/ileuni/ivthinc.html">ivthinc</a> which
is the theorem for a strictly monotonic function
(by Jim Kingdon, 2024-02-20).</li>
<!-- 18th added to list -->
<li><a name="80">80</a>. Fundamental Theorem of Arithmetic (<a
href="mpeuni/1arith2.html">1arith2</a>, by Paul Chapman, 2012-11-17).
The intuitionistic logic explorer (iset.mm) database also includes <a
href="https://us.metamath.org/ileuni/1arith2.html">1arith2</a>
(added by Jim Kingdon, 2024-10-31).</li>
<!-- 34th added to list -->
<li><a name="81">81</a>. Erdős's proof of the divergence
of the inverse prime series (<a
href="mpeuni/prmrec.html">prmrec</a>,
by Mario Carneiro, 2014-08-10)</li>
<!-- 69th added to list -->
<li><a name="83">83</a>. The Friendship Theorem (<a
href="mpeuni/friendship.html">friendship</a>,
by Alexander van der Vekens, 2018-10-09)</li>
<!-- 30th added to list -->
<li><a name="85">85</a>. Divisibility by 3 Rule (<a
href="mpeuni/3dvds.html">3dvds</a>, by Mario Carneiro, 2014-07-14)</li>
<!-- 26th added to list -->
<li><a name="86">86</a>. Lebesgue Measure and Integration (<a
href="mpeuni/itgcl.html">itgcl</a>, by Mario Carneiro, 2014-06-29)</li>
<!-- 17th added to list -->
<li><a name="87">87</a>. Desargues's Theorem (<a
href="mpeuni/dath.html">dath</a>, by Norman Megill, 2012-08-20)</li>
<!-- 44th added to list -->
<li><a name="88">88</a>. Derangements Formula (<a
href="mpeuni/derangfmla.html">derangfmla</a> and <a
href="mpeuni/subfaclim.html">subfaclim</a>,
by Mario Carneiro, 2015-01-28)</li>
<!-- 32nd added to list -->
<li><a name="89">89</a>. The Factor and Remainder Theorems (<a
href="mpeuni/facth.html">facth</a> and <a
href="mpeuni/plyrem.html">plyrem</a>, by Mario
Carneiro, 2014-07-26)</li>
<!-- 64th added to list -->
<li><a name="90">90</a>. Stirling's Formula (<a
href="mpeuni/stirling.html">stirling</a> by
Glauco Siliprandi, 2017-06-29)</li>
<!-- 4th added to list -->
<li><a name="91">91</a>. The Triangle Inequality (<a
href="mpeuni/abstrii.html">abstrii</a>, by Norman Megill, 1999-10-02).
The intuitionistic logic explorer (iset.mm) database includes this proof
as <a href="https://us.metamath.org/ileuni/abstrii.html">abstrii</a>
(added 2021-08-13).</li>
<!-- 47th added to list -->
<li><a name="93">93</a>. The Birthday Problem (<a
href="mpeuni/birthday.html">birthday</a>, by Mario Carneiro, 2015-04-17)</li>
<!-- 52nd added to list -->
<li><a name="94">94</a>. The Law of Cosines (<a
href="mpeuni/lawcos.html">lawcos</a>, by David A. Wheeler, 2015-06-12)</li>
<!-- 51st added to list -->
<li><a name="95">95</a>. Ptolemy's Theorem (<a
href="mpeuni/ptolemy.html">ptolemy</a>, by David A. Wheeler, 2015-05-31).
The intuitionistic logic explorer (iset.mm) database includes this proof
as <a href="https://us.metamath.org/ileuni/ptolemy.html">ptolemy</a>
(added 2024-03-12).</li>
<!-- 65th added to list -->
<li><a name="96">96</a>. Principle of Inclusion/Exclusion (<a
href="mpeuni/incexc.html">incexc</a>, by Mario Carneiro, 2017-08-07)</li>
<!-- 70th added to list -->
<li><a name="97">97</a>. Cramer's Rule (<a
href="mpeuni/cramer.html">cramer</a>,
by Alexander van der Vekens, 2019-02-21,
which built on the key work on determinants by Stefan O'Rear)</li>
<!-- 22nd added to list -->
<li><a name="98">98</a>. Bertrand's Postulate (<a
href="mpeuni/bpos.html">bpos</a>, by Mario Carneiro, 2014-03-15)</li>
</ul>
<p><a name="sup"></a>The page <a
href="http://www.cs.ru.nl/%7Efreek/100/">"Formalizing 100 Theorems"</a>
also contains a supplementary list of "obvious omissions" from the 100.
Of those, the following have been formalized:</p>
<ul>
<li><a name="lbsex"></a>Every vector space is free (<a href="mpeuni/lbsex.html">lbsex</a>,
by Mario Carneiro, 2014-06-25)</li>
<li><a name="heibor"></a>Heine-Borel Theorem (<a href="mpeuni/heibor.html">heibor</a>,
by Jeff Madsen, 2009-09-02) - also see <a href="mpeuni/cnheibor.html">cnheibor</a></li>
<li><a name="hbt"></a>Hilbert Basis Theorem (<a href="mpeuni/hbt.html">hbt</a>,
by Stefan O'Rear, 2015-04-04)</li>
<li><a name="stowei"></a>Stone-Weierstrass Theorem (<a
href="mpeuni/stowei.html">stowei</a>, by Glauco Siliprandi,
2017-04-20)</li>
</ul>
<p id="todo">These are all the theorems from the list of 100 that have <b>not</b> been formalized in Metamath. Please move these to the above list!</p>
<ul>
<li><a name="6">6</a>. Gödel's Incompleteness Theorem</li>
<li><a name="8">8</a>. The Impossibility of Trisecting the Angle and Doubling the Cube</li>
<li><a name="12">12</a>. The Independence of the Parallel Postulate</li>
<li><a name="13">13</a>. Polyhedron Formula</li>
<li><a name="16">16</a>. Insolvability of General Higher Degree Equations</li>
<li><a name="21">21</a>. Green's Theorem</li>
<li><a name="24">24</a>. The Undecidability of the Continuum Hypothesis</li>
<li><a name="28">28</a>. Pascal's Hexagon Theorem</li>
<li><a name="29">29</a>. Feuerbach's Theorem</li>
<li><a name="32">32</a>. The Four Color Problem</li>
<li><a name="33">33</a>. Fermat's Last Theorem</li>
<li><a name="36">36</a>. Brouwer Fixed Point Theorem</li>
<li><a name="40">40</a>. Minkowski's Fundamental Theorem</li>
<li><a name="41">41</a>. Puiseux's Theorem</li>
<li><a name="43">43</a>. The Isoperimetric Theorem</li>
<li><a name="47">47</a>. The Central Limit Theorem</li>
<li><a name="50">50</a>. The Number of Platonic Solids</li>
<li><a name="53">53</a>. <i>π</i> is Transcendental</li>
<li><a name="56">56</a>. The Hermite-Lindemann Transcendence Theorem</li>
<li><a name="59">59</a>. The Laws of Large Numbers</li>
<li><a name="62">62</a>. Fair Games Theorem</li>
<li><a name="82">82</a>. Dissection of Cubes (J.E. Littlewood's "elegant" proof)</li>
<li><a name="84">84</a>. Morley's Theorem</li>
<li><a name="92">92</a>. Pick's Theorem</li>
<li><a name="99">99</a>. Buffon Needle Problem</li>
<li><a name="100">100</a>. Descartes Rule of Signs</li>
</ul>
<p>You can see other proofs done with <a
href="https://us.metamath.org/">Metamath</a> and for traditional
mathematics on the <a
href="mpeuni/mmset.html">Metamath Proof Explorer
Home Page</a>. Note that there are pages similar to this one for other
tools, such as these pages on <a
href="http://www.cs.ru.nl/%7Efreek/100/hol.html">HOL</a> and <a
href="http://www.cs.ru.nl/%7Efreek/100/mizar.html">Mizar</a>.</p>
<p>This metamath list was originally developed by <a
href="http://www.dwheeler.com/">David A. Wheeler</a> and Norman Megill.
If you add new theorems to the list, please tell Freek Wiedijk (freek at
cs dot ru dot nl)</p>
<p>This page is <a
href="https://creativecommons.org/publicdomain/zero/1.0/"> dedicated to the
public domain through the Creative Commons license CC0</a>, to maximize the
availability of this page's information.</p>
<!--
</div> <div class="wrapper close"></div></div>
<div
class="footer"><hr><span class="gotobar bar"><a class="local"
href="http://wiki.planetmath.org/cgi-bin/wiki.pl/HomePage">HomePage</a>
<a class="local"
href="http://wiki.planetmath.org/cgi-bin/wiki.pl/RecentChanges">RecentChanges</a>
</span><span class="edit bar"><br> <a class="password"
href="http://wiki.planetmath.org/cgi-bin/wiki.pl?action=password">This
page is read-only</a> <a class="history"
href="http://wiki.planetmath.org/cgi-bin/wiki.pl?action=history;id=metamath_100">View
other revisions</a> <a class="admin"
href="http://wiki.planetmath.org/cgi-bin/wiki.pl?action=admin;id=metamath_100">Administration</a></span><span
class="time"><br> Last edited 2014-07-31 04:28 UTC by <a class="author"
title="cable-47-143.sssnet.com"
href="http://wiki.planetmath.org/cgi-bin/wiki.pl/digama">digama</a>
<a class="diff"
href="http://wiki.planetmath.org/cgi-bin/wiki.pl?action=browse;diff=2;id=metamath_100">(diff)</a>
</span><form
method="get"
action="/web/20140804110134/http://wiki.planetmath.org/cgi-bin/wiki.pl"
enctype="multipart/form-data" accept-charset="utf-8" class="search">
<p><label for="search">Search:</label> <input name="search" size="20"
accesskey="f" id="search" type="text"> <input name="dosearch"
value="Go!" type="submit"></p></form></div>
-->
<!--
<TABLE ALIGN=CENTER> <TR><TD HEIGHT=500 VALIGN=MIDDLE>
(This space purposely left blank so that anchors in external
links will align properly)</TD></TR></TABLE>
-->
<P>
<HR NOSHADE SIZE=1>
<TABLE WIDTH="100%">
<TR>
<TD ALIGN=RIGHT>
<FONT FACE="ARIAL" SIZE=-2> <A
HREF="https://validator.w3.org/check?uri=referer">W3C HTML validation</A>
</FONT>
</TD>
</TR>
</TABLE>
</body></html>
<!--
FILE ARCHIVED ON 11:01:34 Aug 4, 2014 AND RETRIEVED FROM THE
INTERNET ARCHIVE ON 1:16:06 Apr 18, 2015.
JAVASCRIPT APPENDED BY WAYBACK MACHINE, COPYRIGHT INTERNET ARCHIVE.
ALL OTHER CONTENT MAY ALSO BE PROTECTED BY COPYRIGHT (17 U.S.C.
SECTION 108(a)(3)).
-->