forked from fishercoder1534/Leetcode
-
Notifications
You must be signed in to change notification settings - Fork 1
/
_698.java
57 lines (50 loc) · 1.88 KB
/
_698.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
package com.fishercoder.solutions;
/**
* 698. Partition to K Equal Sum Subsets
*
* Given an array of integers nums and a positive integer k,
* find whether it's possible to divide this array into k non-empty subsets whose sums are all equal.
Example 1:
Input: nums = [4, 3, 2, 3, 5, 2, 1], k = 4
Output: True
Explanation: It's possible to divide it into 4 subsets (5), (1, 4), (2,3), (2,3) with equal sums.
Note:
1 <= k <= len(nums) <= 16.
0 < nums[i] < 10000.
*/
public class _698 {
public static class Solution1 {
public boolean canPartitionKSubsets(int[] nums, int k) {
long sum = 0;
for (int num : nums) {
sum += num;
}
if (sum % k != 0) {
return false;
}
int equalSum = (int) (sum / k);
boolean[] visited = new boolean[nums.length];
return canPartition(nums, visited, 0, k, 0, 0, equalSum);
}
private boolean canPartition(int[] nums, boolean[] visited, int startIndex, int k, int currSum, int currNum, int target) {
if (k == 1) {
return true;
}
if (currSum == target && currNum > 0) {
/**Everytime when we get currSum == target, we'll start from index 0 and look up the numbers that are not used yet
* and try to find another sum that could equal to target*/
return canPartition(nums, visited, 0, k - 1, 0, 0, target);
}
for (int i = startIndex; i < nums.length; i++) {
if (!visited[i]) {
visited[i] = true;
if (canPartition(nums, visited, i + 1, k, currSum + nums[i], currNum++, target)) {
return true;
}
visited[i] = false;
}
}
return false;
}
}
}