forked from fishercoder1534/Leetcode
-
Notifications
You must be signed in to change notification settings - Fork 1
/
_444.java
117 lines (100 loc) · 3.61 KB
/
_444.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
package com.fishercoder.solutions;
import java.util.HashMap;
import java.util.HashSet;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.Queue;
import java.util.Set;
/**
* 444. Sequence Reconstruction
*
* Check whether the original sequence org can be uniquely reconstructed from the sequences in seqs.
* The org sequence is a permutation of the integers from 1 to n, with 1 ≤ n ≤ 104.
* Reconstruction means building a shortest common supersequence of the sequences in seqs
* (i.e., a shortest sequence so that all sequences in seqs are subsequences of it).
* Determine whether there is only one sequence that can be reconstructed from seqs and it is the org sequence.
Example 1:
Input:
org: [1,2,3], seqs: [[1,2],[1,3]]
Output:
false
Explanation:
[1,2,3] is not the only one sequence that can be reconstructed, because [1,3,2] is also a valid sequence that can be reconstructed.
Example 2:
Input:
org: [1,2,3], seqs: [[1,2]]
Output:
false
Explanation:
The reconstructed sequence can only be [1,2].
Example 3:
Input:
org: [1,2,3], seqs: [[1,2],[1,3],[2,3]]
Output:
true
Explanation:
The sequences [1,2], [1,3], and [2,3] can uniquely reconstruct the original sequence [1,2,3].
Example 4:
Input:
org: [4,1,5,2,6,3], seqs: [[5,2,6,3],[4,1,5,2]]
Output:
true
*/
public class _444 {
public static class Solution1 {
/**
* credit: https://discuss.leetcode.com/topic/65948/java-solution-using-bfs-topological-sort
*/
public boolean sequenceReconstruction(int[] org, List<List<Integer>> seqs) {
Map<Integer, Set<Integer>> map = new HashMap<>();
Map<Integer, Integer> indegree = new HashMap<>();
for (List<Integer> seq : seqs) {
if (seq.size() == 1) {
if (!map.containsKey(seq.get(0))) {
map.put(seq.get(0), new HashSet<>());
indegree.put(seq.get(0), 0);
}
} else {
for (int i = 0; i < seq.size() - 1; i++) {
if (!map.containsKey(seq.get(i))) {
map.put(seq.get(i), new HashSet<>());
indegree.put(seq.get(i), 0);
}
if (!map.containsKey(seq.get(i + 1))) {
map.put(seq.get(i + 1), new HashSet<>());
indegree.put(seq.get(i + 1), 0);
}
if (map.get(seq.get(i)).add(seq.get(i + 1))) {
indegree.put(seq.get(i + 1), indegree.get(seq.get(i + 1)) + 1);
}
}
}
}
Queue<Integer> queue = new LinkedList<>();
for (Integer key : indegree.keySet()) {
if (indegree.get(key) == 0) {
queue.offer(key);
}
}
int index = 0;
while (!queue.isEmpty()) {
int size = queue.size();
if (size > 1) {
return false;
}
int curr = queue.poll();
if (index == org.length || curr != org[index++]) {
return false;
}
for (int next : map.get(curr)) {
indegree.put(next, indegree.get(next) - 1);
if (indegree.get(next) == 0) {
queue.offer(next);
}
}
}
return index == org.length && index == map.size();
}
}
}