-
Notifications
You must be signed in to change notification settings - Fork 46
/
string_matching.v
261 lines (233 loc) · 6.35 KB
/
string_matching.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
(** Example by Nicky Vazou, unfinished *)
Require Import Arith.
From Stdlib Require Import DecidableClass.
From Stdlib.Program Require Import Wf.
Require Import List Lia.
Require Import PeanoNat.
Require Import Program.
From Equations Require Import Equations.
Import ListNotations.
Set Keyed Unification.
Class Associative {T: Type} (op: T -> T -> T) :=
{
associativity: forall x y z, op x (op y z) = op (op x y) z;
}.
Class Monoid (T: Type) :=
MkMonoid {
unit: T;
op: T -> T -> T;
monoid_associative: Associative op;
monoid_left_identity: forall x, op unit x = x;
monoid_right_identity: forall x, op x unit = x;
}.
#[export]
Instance app_Associative: forall T, Associative (@app T).
Proof.
intro T.
constructor.
induction x.
{ reflexivity. }
{ simpl. congruence. }
Defined.
#[export]
Instance list_Monoid: forall T, Monoid (list T).
Proof.
intro T.
apply MkMonoid with (unit := []) (op := @app T).
{ auto with typeclass_instances. }
{ reflexivity. }
{ induction x.
{ reflexivity. }
{ simpl. congruence. }
}
Defined.
Notation "a ** b" := (op a b) (at level 50).
Class MonoidMorphism
{Tn Tm: Type}
`{Mn: Monoid Tn} `{Mm: Monoid Tm}
(f: Tn -> Tm)
:=
{
morphism_unit: f unit = unit;
morphism_op: forall x y, f (x ** y) = f x ** f y;
}.
Class ChunkableMonoid (T: Type) `{Monoid T} :=
MkChunkableMonoid {
length: T -> nat;
drop: nat -> T -> T;
take: nat -> T -> T;
drop_spec:
forall i x,
length (drop i x) = length x - i;
take_spec:
forall i x,
i <= length x ->
length (take i x) = i;
take_drop_spec:
forall i x, x = take i x ** drop i x;
}.
Fixpoint list_take {T: Type} i (l: list T) :=
match i, l with
| 0, _ => []
| _, [] => []
| S i, h::t => h :: list_take i t
end.
Fixpoint list_drop {T: Type} i (l: list T) :=
match i, l with
| 0, _ => l
| _, [] => []
| S i, h::t => list_drop i t
end.
Ltac intuition_solver ::= auto with core arith datatypes solve_subterm.
#[export]
Instance list_ChunkableMonoid: forall T, ChunkableMonoid (list T).
Proof.
intro T.
apply MkChunkableMonoid
with (length := @List.length T) (drop := list_drop) (take := list_take);
intros.
{ generalize dependent x.
induction i, x; intros; intuition.
}
{ generalize dependent x.
induction i, x; intros; intuition.
simpl in *.
rewrite IHi; intuition.
}
{ generalize dependent x.
induction i, x; intros; intuition.
simpl in *.
rewrite <- IHi.
reflexivity.
}
Defined.
Section Chunk.
Context{T : Type} `{M : ChunkableMonoid T}.
Set Program Mode.
Equations? chunk (i: { i : nat | i > 0 }) (x : T) : list T by wf (length x) lt :=
chunk i x with dec (length x <=? i) :=
{ | left _ => [x] ;
| right p => take i x :: chunk i (drop i x) }.
Proof. apply leb_complete_conv in p. rewrite drop_spec. lia. Qed.
End Chunk.
Theorem if_flip_helper {B: Type} {b: bool}
(C E: true = b -> B) (D F: false = b -> B):
(forall (r: true = b), C r = E r) ->
(forall (r: false = b), D r = F r) ->
(if b as an return an = b -> B then C else D) eq_refl =
(if b as an return an = b -> B then E else F) eq_refl.
Proof.
intros.
destruct b.
apply H.
apply H0.
Qed.
(* Transparent chunk.
Eval compute in (chunk (exist _ 3 _) [0; 1; 2; 3; 4; 5; 6; 7; 8; 9]). *)
(*
= [[0; 1; 2]; [3; 4; 5]; [6; 7; 8]; [9]]
: list (list nat)
*)
Section mconcat.
Context {M : Type} `{Monoid M}.
Equations mconcat (l: list M): M :=
mconcat [] := unit;
mconcat (cons x xs) := x ** mconcat xs.
End mconcat.
Transparent mconcat.
Theorem morphism_distribution:
forall {M N: Type}
`{MM: Monoid M} `{MN: Monoid N}
`{CMM: @ChunkableMonoid N MN}
(f: N -> M)
`{MMf: @MonoidMorphism _ _ MN MM f},
forall i x,
f x = mconcat (map f (chunk i x)).
Proof.
intros.
funelim (chunk i x).
{ simpl. simp mconcat. now rewrite monoid_right_identity. }
simpl. simp mconcat.
rewrite <- H; auto.
rewrite <- morphism_op.
now rewrite <- take_drop_spec.
Qed.
Lemma length_list_drop: forall {T: Type} i (x: list T),
i < Datatypes.length x ->
Datatypes.length (list_drop i x) = Datatypes.length x - i.
Proof.
intros.
generalize dependent i.
induction x; destruct i; simpl; intros.
{ reflexivity. }
{ reflexivity. }
{ reflexivity. }
{ apply IHx. intuition. }
Qed.
Lemma length_chunk_base:
forall {T: Type} I (x: list T),
let i := proj1_sig I in
i > 1 ->
Datatypes.length x <= i ->
Datatypes.length (chunk I x) = 1.
Proof.
intros; subst i.
funelim (chunk I x). reflexivity.
simpl.
apply leb_correct in H1. rewrite p in H1. discriminate.
Qed.
Ltac feed H :=
match type of H with
| ?foo -> _ =>
let FOO := fresh in
assert foo as FOO; [|specialize (H FOO); clear FOO]
end.
Lemma length_chunk_lt:
forall {T: Type} I (x: list T),
let i := proj1_sig I in
i > 1 ->
Datatypes.length x > i ->
Datatypes.length (chunk I x) < Datatypes.length x.
Proof.
intros; subst i.
funelim (chunk I x).
simpl. lia.
simpl.
specialize (H H0).
revert H. unfold drop. simpl.
pose proof (drop_spec (` i) x). simpl in H.
rewrite H by lia. clear H.
simp chunk. clear Heq. destruct dec. simp chunk; simpl; intros; try lia. intros.
feed H.
clear H. apply leb_complete_conv in e.
pose proof (drop_spec (` i) x). rewrite H in e; try lia;
unfold length in *; simpl in *; lia.
lia.
Qed.
Section pmconcat.
Context {M : Type} `{ChunkableMonoid M}.
Equations? pmconcat (I : { i : nat | i > 0 }) (x : list M) : M by wf (length x) lt :=
pmconcat i x with dec ((` i <=? 1) || (length x <=? ` i))%bool => {
| left H => mconcat x ;
| right Hd => pmconcat i (map mconcat (chunk i x)) }.
Proof. clear pmconcat.
rewrite map_length.
rewrite Bool.orb_false_iff in Hd.
destruct Hd. apply leb_complete_conv in H2. apply leb_complete_conv in H3.
apply length_chunk_lt; simpl; auto.
Qed. (* 0.264s from 1.571s *)
End pmconcat.
#[export] Instance mconcat_mon T : MonoidMorphism (@mconcat (list T) _).
Next Obligation.
Proof.
funelim (mconcat x). reflexivity.
simpl. rewrite H. now rewrite <- app_assoc.
Qed.
Theorem concatEquivalence: forall {T: Type} i (x: list (list T)),
pmconcat i x = mconcat x.
Proof.
intros.
funelim (pmconcat i x).
reflexivity.
rewrite H. now rewrite <- (morphism_distribution mconcat).
Qed.