We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Hi, I was using nlpaug.augmenter.word.context_word_embs.ContextualWordEmbsAug to augment my text with bert embeddings.
nlpaug.augmenter.word.context_word_embs.ContextualWordEmbsAug
Here is my code:
import torch import nlpaug.augmenter.word.context_word_embs as naw device = torch.device("cuda" if torch.cuda.is_available() else "cpu") aug = naw.ContextualWordEmbsAug( model_path='bert-base-uncased', model_type='bert', action='substitute', aug_p=0.1, aug_min=1, aug_max=10, device=device.type, # 'cpu' or 'cuda' ) text = "try this text for aug" augmented_text = aug.augment(data=text, n=10) print("Original:") print(text) print("Augmented Text:") print(augmented_text)
But I got this error:
--------------------------------------------------------------------------- TypeError Traceback (most recent call last) [<ipython-input-36-49516817fab2>](https://localhost:8080/#) in <module> 12 13 text = "try this text for aug" ---> 14 augmented_text = aug.augment(data=text, n=10) 15 print("Original:") 16 print(text) 3 frames [/usr/local/lib/python3.8/dist-packages/nlpaug/base_augmenter.py](https://localhost:8080/#) in augment(self, data, n, num_thread) 96 elif self.__class__.__name__ in ['AbstSummAug', 'BackTranslationAug', 'ContextualWordEmbsAug', 'ContextualWordEmbsForSentenceAug']: 97 for _ in range(aug_num): ---> 98 result = action_fx(clean_data) 99 if isinstance(result, list): 100 augmented_results.extend(result) [/usr/local/lib/python3.8/dist-packages/nlpaug/augmenter/word/context_word_embs.py](https://localhost:8080/#) in substitute(self, data) 469 continue 470 --> 471 outputs = self.model.predict(masked_texts, target_words=original_tokens, n=2) 472 473 # Update doc [/usr/local/lib/python3.8/dist-packages/nlpaug/model/lang_models/bert.py](https://localhost:8080/#) in predict(self, texts, target_words, n) 111 seed = {'temperature': self.temperature, 'top_k': self.top_k, 'top_p': self.top_p} 112 target_token_logits = self.control_randomness(target_token_logits, seed) --> 113 target_token_logits, target_token_idxes = self.filtering(target_token_logits, seed) 114 if len(target_token_idxes) != 0: 115 new_tokens = self.pick(target_token_logits, target_token_idxes, target_word=target_token, n=10) [/usr/local/lib/python3.8/dist-packages/nlpaug/model/lang_models/language_models.py](https://localhost:8080/#) in filtering(self, logits, seed) 142 logits = logits.index_select(0, idxes) 143 # TODO: Externalize to util for checking --> 144 if 'cuda' in self.device: 145 idxes = idxes.cpu() 146 idxes = idxes.detach().numpy().tolist() TypeError: argument of type 'torch.device' is not iterable
Could you help me with this?
Thank you! Best wishes, Yaqi
The text was updated successfully, but these errors were encountered:
Installing the latest version with pip install numpy git+https://github.com/makcedward/nlpaug.git solved this issue.
pip install numpy git+https://github.com/makcedward/nlpaug.git
Sorry, something went wrong.
No branches or pull requests
Hi, I was using
nlpaug.augmenter.word.context_word_embs.ContextualWordEmbsAug
to augment my text with bert embeddings.Here is my code:
But I got this error:
Could you help me with this?
Thank you!
Best wishes,
Yaqi
The text was updated successfully, but these errors were encountered: