forked from larrylawl/CP-VAE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluate.py
65 lines (54 loc) · 2.23 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# Copyright (c) 2020-present, Royal Bank of Canada.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import pandas as pd
import argparse
from utils.bleu import compute_bleu
from utils.text_utils import MonoTextData
import torch
from classifier import CNNClassifier, evaluate
import os
def main(args):
# data_pth = "data/%s" % args.data_name
data_pth = os.path.join(args.hard_disk_dir, "data", args.data_name, "processed")
train_pth = os.path.join(data_pth, "train_data.txt")
train_data = MonoTextData(train_pth, True, vocab=100000)
vocab = train_data.vocab
source_pth = os.path.join(data_pth, "test_data.txt")
target_pth = args.target_path
eval_data = MonoTextData(target_pth, True, vocab=vocab)
source = pd.read_csv(source_pth, names=['label', 'content'], sep='\t')
target = pd.read_csv(target_pth, names=['label', 'content'], sep='\t')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Classification Accuracy
model = CNNClassifier(len(vocab), 300, [1, 2, 3, 4, 5], 500, 0.5).to(device)
model.load_state_dict(torch.load(os.path.join(args.hard_disk_dir, "checkpoint", f"{args.data_name}-classifier.pt")))
# model.load_state_dict(torch.load("checkpoint/%s-classifier.pt" % args.data_name))
model.eval()
eval_data, eval_label = eval_data.create_data_batch_labels(64, device, batch_first=True)
acc = 100 * evaluate(model, eval_data, eval_label)
print("Acc: %.2f" % acc)
# BLEU Score
total_bleu = 0.0
sources = []
targets = []
for i in range(source.shape[0]):
s = source.content[i].split()
t = target.content[i].split()
sources.append([s])
targets.append(t)
total_bleu += compute_bleu(sources, targets)[0]
total_bleu *= 100
print("Bleu: %.2f" % total_bleu)
def add_args(parser):
parser.add_argument('--data_name', type=str, default='yelp')
parser.add_argument('--hard_disk_dir', type=str, default='/hdd2/lannliat/CP-VAE')
parser.add_argument('--target_path', type=str)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
add_args(parser)
args = parser.parse_args()
main(args)