forked from larrylawl/CP-VAE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
classifier.py
138 lines (116 loc) · 4.99 KB
/
classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# Copyright (c) 2020-present, Royal Bank of Canada.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import argparse
from utils.text_utils import MonoTextData
import numpy as np
import os
class CNNClassifier(nn.Module):
def __init__(self, vocab_size, embed_dim, filter_sizes, n_filters, dropout):
super(CNNClassifier, self).__init__()
self.n_filters = n_filters
self.embedding = nn.Embedding(vocab_size, embed_dim)
self.cnns = nn.ModuleList([
nn.Conv2d(embed_dim, n_filters, (x, 1)) for x in filter_sizes])
self.dropout = nn.Dropout(dropout)
self.output = nn.Linear(len(filter_sizes) * n_filters, 1)
def forward(self, inputs):
inputs = self.embedding(inputs).unsqueeze(-1)
inputs = inputs.permute(0, 2, 1, 3)
outputs = []
for cnn in self.cnns:
conv = cnn(inputs)
h = F.leaky_relu(conv)
pooled = torch.max(h, 2)[0].view(-1, self.n_filters)
outputs.append(pooled)
outputs = torch.cat(outputs, -1)
outputs = self.dropout(outputs)
logits = self.output(outputs)
return logits.squeeze(1)
def evaluate(model, eval_data, eval_label):
correct_num = 0
total_sample = 0
for batch_data, batch_label in zip(eval_data, eval_label):
batch_size = batch_data.size(0)
logits = model(batch_data)
probs = torch.sigmoid(logits)
y_hat = list((probs > 0.5).long().cpu().numpy())
correct_num += sum([p == q for p, q in zip(batch_label, y_hat)])
total_sample += batch_size
return correct_num / total_sample
def main(args):
# data_pth = "data/%s" % args.data_name
data_pth = os.path.join(args.hard_disk_dir, "data", args.data_name, "processed")
train_pth = os.path.join(data_pth, "train_data.txt")
dev_pth = os.path.join(data_pth, "dev_data.txt")
test_pth = os.path.join(data_pth, "test_data.txt")
train_data = MonoTextData(train_pth, True, vocab=100000)
vocab = train_data.vocab
dev_data = MonoTextData(dev_pth, True, vocab=vocab)
test_data = MonoTextData(test_pth, True, vocab=vocab)
path = os.path.join(args.hard_disk_dir, "checkpoint", f"{args.data_name}-classifier.pt")
# path = "checkpoint/%s-classifier.pt" % args.data_name
glove_embed = np.zeros((len(vocab), 300))
with open(os.path.join(args.hard_disk_dir, "data", "glove.840B.300d.txt")) as f:
for line in f:
word, vec = line.split(' ', 1)
if word in vocab:
wid = vocab[word]
glove_embed[wid, :] = np.fromstring(vec, sep=' ', dtype=np.float32)
_mu = glove_embed.mean()
_std = glove_embed.std()
glove_embed[:4, :] = np.random.randn(4, 300) * _std + _mu
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
train_batch, train_label = train_data.create_data_batch_labels(64, device, batch_first=True)
dev_batch, dev_label = dev_data.create_data_batch_labels(64, device, batch_first=True)
test_batch, test_label = test_data.create_data_batch_labels(64, device, batch_first=True)
model = CNNClassifier(len(vocab), 300, [1, 2, 3, 4, 5], 500, 0.5).to(device)
optimizer = optim.Adam(model.parameters(), lr=5e-4)
nbatch = len(train_batch)
best_acc = 0.0
step = 0
with torch.no_grad():
model.embedding.weight.fill_(0.)
model.embedding.weight += torch.FloatTensor(glove_embed).to(device)
for epoch in range(args.max_epochs):
for idx in np.random.permutation(range(nbatch)):
batch_data = train_batch[idx]
batch_label = train_label[idx]
batch_label = torch.tensor(batch_label, dtype=torch.float,
requires_grad=False, device=device)
optimizer.zero_grad()
logits = model(batch_data)
loss = F.binary_cross_entropy_with_logits(logits, batch_label)
loss.backward()
optimizer.step()
step += 1
if step % 1000 == 0:
print('Loss: %2f' % loss.item())
model.eval()
acc = evaluate(model, dev_batch, dev_label)
model.train()
print('Valid Acc: %.2f' % acc)
if acc > best_acc:
best_acc = acc
print('saving to %s' % path)
torch.save(model.state_dict(), path)
model.load_state_dict(torch.load(path))
model.eval()
acc = evaluate(model, test_batch, test_label)
print('Test Acc: %.2f' % acc)
def add_args(parser):
parser.add_argument('--data_name', type=str, default='yelp')
parser.add_argument('--hard_disk_dir', type=str, default='/hdd2/lannliat/CP-VAE')
parser.add_argument('--max_epochs', type=int, default=20)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
add_args(parser)
args = parser.parse_args()
main(args)