forked from riverphoenix/tacotron2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
data_load.py
256 lines (224 loc) · 9.25 KB
/
data_load.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
# -*- coding: utf-8 -*-
#/usr/bin/python2
from __future__ import print_function
from hyperparams import Hyperparams as hp
import numpy as np
import tensorflow as tf
from utils import *
import codecs
import re
import os
import unicodedata
from num2words import num2words
from random import randint
import pandas as pd
import random
def keep_pho():
return random.random() > hp.phon_drop
cmu = pd.read_csv('cmudict.dict.txt',header=None,names=['name'])
cmu['word'], cmu['phone'] = cmu['name'].str.split(' ', 1).str
cmu['word'] = cmu['word'].str.upper()
cmu.drop(['name'],axis=1,inplace=True)
cmu = list(cmu.set_index('word').to_dict().values()).pop()
def text_normalize(sent):
'''Minimum text preprocessing'''
def _strip_accents(s):
return ''.join(c for c in unicodedata.normalize('NFD', s)
if unicodedata.category(c) != 'Mn')
normalized = []
for word in sent.split():
word = _strip_accents(word.lower())
srch = re.match("\d[\d,.]*$", word)
if srch:
word = num2words(float(word.replace(",", "")))
word = re.sub(u"[-—-]", " ", word)
word = re.sub("[^ a-z'.?]", "", word)
normalized.append(word)
normalized = " ".join(normalized)
normalized = re.sub("[ ]{2,}", " ", normalized)
normalized = normalized.strip()
return normalized
def text_normalize_cmu(sent):
'''Remove accents and upper strings.'''
def _strip_accents(s):
return ''.join(c for c in unicodedata.normalize('NFD', s)
if unicodedata.category(c) != 'Mn')
normalized = []
for word in sent.split():
word = _strip_accents(word.lower())
srch = re.match("\d[\d,.]*$", word)
if srch:
word = num2words(float(word.replace(",", "")))
word = re.sub(u"[-—-]", " ", word)
word = re.sub("[^ a-z'.?]", "", word)
normalized.append(word)
normalized = " ".join(normalized)
normalized = re.sub("[ ]{2,}", " ", normalized)
normalized = normalized.strip()
normalized = re.sub("[^ A-Z,;.]", "", _strip_accents(sent).upper())
if normalized[-1] in [".",",","?",";"]:
normalized = normalized[0:-1]
normalized = re.sub('\'',' ',normalized)
normalized = re.sub(' ','@',normalized)
normalized = re.sub(',','@@',normalized)
normalized = re.sub(';','@@@',normalized)
normalized = re.sub('\.','@@@@',normalized)
normalized = normalized.strip()
return normalized
def break_to_phonemes(strin):
strin = re.sub('([A-Z])@','\\1 @',strin)
strin = re.sub('([A-Z])\*','\\1 *',strin)
strin = re.sub('@([A-Z])','@ \\1',strin)
strin = re.sub("\\s+", " ",strin)
strin = re.split('\s',strin)
strout = ""
for word_in in strin:
word_in = word_in.upper()
wpd = wwd = ""
if "@" in word_in:
wpd = word_in
else:
if word_in in cmu:
if keep_pho():
wwd = cmu[word_in].split(" ")
else:
wwd = list(word_in)
for kl in range(0,len(wwd)):
if len(wwd[kl])==3:
wwd[kl] = wwd[kl][0:2]
else:
wwd = list(word_in)
for kl in range(0,len(wwd)):
if kl!=len(wwd)-1:
wpd = wpd+wwd[kl]+" "
else:
wpd = wpd+wwd[kl]
strout = strout + wpd
return strout
def load_vocab():
vocab = "PE abcdefghijklmnopqrstuvwxyz'.?" # P: Padding E: End of Sentence
char2idx = {char: idx for idx, char in enumerate(vocab)}
idx2char = {idx: char for idx, char in enumerate(vocab)}
return char2idx, idx2char
def load_vocab_cmu():
valid_symbols = ['#','@','A','AA', 'AE', 'AH', 'AO', 'AW', 'AY', 'B', 'C','CH', 'D', 'DH', 'E','EH', 'ER', 'EY',
'F', 'G', 'H','HH', 'I','IH', 'IY', 'J','JH', 'K', 'L', 'M', 'N', 'NG', 'OW','O', 'OY', 'P', 'Q','R', 'S', 'SH',
'T', 'TH', 'U','UH', 'UW','V', 'W', 'X','Y', 'Z', 'ZH','*',"'"]
_valid_symbol_set = set(valid_symbols)
char2idx = {char: idx for idx, char in enumerate(_valid_symbol_set)}
idx2char = {idx: char for idx, char in enumerate(_valid_symbol_set)}
return char2idx, idx2char
def str_to_ph(strin):
strin = re.sub('([A-Z])@','\\1 @',strin)
strin = re.sub('([A-Z])\*','\\1 *',strin)
strin = re.sub('@([A-Z])','@ \\1',strin)
strin = re.sub('@',' @',strin)
strin = re.sub("\\s+", " ",strin)
strin = re.sub("@\*","*",strin)
strin = re.split('\s',strin)
return strin
def invert_text(txt):
if not hp.run_cmu:
char2idx, idx2char = load_vocab()
pstring = [idx2char[char] for char in txt]
pstring = ''.join(pstring)
pstring = pstring.replace("E", "")
pstring = pstring.replace("P", "")
else:
char2idx, idx2char = load_vocab_cmu()
pstring = [idx2char[char] for char in txt]
pstring = ''.join(pstring)
pstring = pstring.replace("@", " ")
pstring = pstring.replace("#", "")
pstring = pstring.replace("*", "")
return pstring
def load_test_data():
# Load vocabulary
if not hp.run_cmu:
char2idx, idx2char = load_vocab()
else:
char2idx, idx2char = load_vocab_cmu()
# Parse
texts = []
for line in codecs.open('test_sents.txt', 'r', 'utf-8'):
if not hp.run_cmu:
sent = text_normalize(line).strip() + "E" # text normalization, E: EOS
else:
sent = text_normalize_cmu(line) + "*" # text normalization, *: EOS
sent = break_to_phonemes(sent)
sent = str_to_ph(sent)
if len(sent) <= hp.T_x:
if not hp.run_cmu:
sent += "P"*(hp.T_x-len(sent))
else:
sent.extend(['#'] * (hp.T_x-len(sent)))
texts.append([char2idx[char] for char in sent])
texts = np.array(texts, np.int32)
return texts
def load_data(config,training=True):
# Load vocabulary
if not hp.run_cmu:
char2idx, idx2char = load_vocab()
else:
char2idx, idx2char = load_vocab_cmu()
# Parse
texts, _texts_test, mels, mags, dones = [], [], [], [], []
num_samples = 1
metadata = os.path.join(config.data_paths, 'metadata.csv')
for line in codecs.open(metadata, 'r', 'utf-8'):
fname, _, sent = line.strip().split("|")
if not hp.run_cmu:
sent = text_normalize(sent) + "E" # text normalization, E: EOS
else:
sent = text_normalize_cmu(sent) + "*" # text normalization, E: EOS
sent = break_to_phonemes(sent)
sent = str_to_ph(sent)
if len(sent) <= hp.T_x:
if not hp.run_cmu:
sent += "P"*(hp.T_x-len(sent)) #this was added
else:
sent.extend(['#'] * (hp.T_x-len(sent)))
pstring = [char2idx[char] for char in sent]
texts.append(np.array(pstring, np.int32).tostring())
_texts_test.append(np.array(pstring,np.int32).tostring())
mels.append(os.path.join(config.data_paths, "mels", fname + ".npy"))
mags.append(os.path.join(config.data_paths, "mags", fname + ".npy"))
dones.append(os.path.join(config.data_paths, "dones", fname + ".npy"))
return texts, _texts_test, mels, mags, dones
def get_batch(config):
"""Loads training data and put them in queues"""
with tf.device('/cpu:0'):
# Load data
_texts, _texts_tests, _mels, _mags, _dones = load_data(config)
# Calc total batch count
num_batch = len(_texts) // hp.batch_size
# Convert to string tensor
texts = tf.convert_to_tensor(_texts)
texts_tests = tf.convert_to_tensor(_texts_tests)
mels = tf.convert_to_tensor(_mels)
mags = tf.convert_to_tensor(_mags)
dones = tf.convert_to_tensor(_dones)
# Create Queues
text, texts_test, mel, mag, done = tf.train.slice_input_producer([texts,texts_tests, mels, mags, dones], shuffle=True)
# Decoding
text = tf.decode_raw(text, tf.int32) # (None,)
texts_test = tf.decode_raw(texts_test, tf.int32) # (None,)
mel = tf.py_func(lambda x:np.load(x), [mel], tf.float32) # (None, n_mels)
mag = tf.py_func(lambda x:np.load(x), [mag], tf.float32)
done = tf.py_func(lambda x:np.load(x), [done], tf.int32) # (None,)
# Padding
text = tf.pad(text, ((0, hp.T_x),))[:hp.T_x] # (Tx,)
texts_test = tf.pad(texts_test, ((0, hp.T_x),))[:hp.T_x] # (Tx,)
mel = tf.pad(mel, ((0, hp.T_y), (0, 0)))[:hp.T_y] # (Ty, n_mels)
done = tf.pad(done, ((0, hp.T_y),))[:hp.T_y] # (Ty,)
mag = tf.pad(mag, ((0, hp.T_y), (0, 0)))[:hp.T_y] # (Ty, 1+n_fft/2)
# Reduction
mel = tf.reshape(mel, (hp.T_y//hp.r, -1)) # (Ty/r, n_mels*r)
done = done[::hp.r] # (Ty/r,)
texts, texts_tests, mels, mags, dones = tf.train.batch([text, texts_test, mel, mag, done],
shapes=[(hp.T_x,), (hp.T_x,), (hp.T_y//hp.r, hp.n_mels*hp.r), (hp.T_y, 1+hp.n_fft//2), (hp.T_y//hp.r,)],
num_threads=8,
batch_size=hp.batch_size,
capacity=hp.batch_size*8,
dynamic_pad=False)
return texts_tests, texts, mels, dones, mags, num_batch