forked from mit-han-lab/efficientvit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
demo_sam_model.py
215 lines (186 loc) · 7.43 KB
/
demo_sam_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
# EfficientViT: Multi-Scale Linear Attention for High-Resolution Dense Prediction
# Han Cai, Junyan Li, Muyan Hu, Chuang Gan, Song Han
# International Conference on Computer Vision (ICCV), 2023
import argparse
import os
import time
import cv2
import matplotlib.pyplot as plt
import numpy as np
import yaml
from matplotlib.patches import Rectangle
from PIL import Image
from efficientvit.apps.utils import parse_unknown_args
from efficientvit.models.efficientvit.sam import EfficientViTSamAutomaticMaskGenerator, EfficientViTSamPredictor
from efficientvit.models.utils import build_kwargs_from_config
from efficientvit.sam_model_zoo import create_sam_model
def load_image(data_path: str, mode="rgb") -> np.ndarray:
img = Image.open(data_path)
if mode == "rgb":
img = img.convert("RGB")
return np.array(img)
def cat_images(image_list: list[np.ndarray], axis=1, pad=20) -> np.ndarray:
shape_list = [image.shape for image in image_list]
max_h = max([shape[0] for shape in shape_list]) + pad * 2
max_w = max([shape[1] for shape in shape_list]) + pad * 2
for i, image in enumerate(image_list):
canvas = np.zeros((max_h, max_w, 3), dtype=np.uint8)
h, w, _ = image.shape
crop_y = (max_h - h) // 2
crop_x = (max_w - w) // 2
canvas[crop_y : crop_y + h, crop_x : crop_x + w] = image
image_list[i] = canvas
image = np.concatenate(image_list, axis=axis)
return image
def show_anns(anns) -> None:
if len(anns) == 0:
return
sorted_anns = sorted(anns, key=(lambda x: x["area"]), reverse=True)
ax = plt.gca()
ax.set_autoscale_on(False)
img = np.ones((sorted_anns[0]["segmentation"].shape[0], sorted_anns[0]["segmentation"].shape[1], 4))
img[:, :, 3] = 0
for ann in sorted_anns:
m = ann["segmentation"]
color_mask = np.concatenate([np.random.random(3), [0.35]])
img[m] = color_mask
ax.imshow(img)
def draw_binary_mask(raw_image: np.ndarray, binary_mask: np.ndarray, mask_color=(0, 0, 255)) -> np.ndarray:
color_mask = np.zeros_like(raw_image, dtype=np.uint8)
color_mask[binary_mask == 1] = mask_color
mix = color_mask * 0.5 + raw_image * (1 - 0.5)
binary_mask = np.expand_dims(binary_mask, axis=2)
canvas = binary_mask * mix + (1 - binary_mask) * raw_image
canvas = np.asarray(canvas, dtype=np.uint8)
return canvas
def draw_bbox(
image: np.ndarray,
bbox: list[list[int]],
color: str or list[str] = "g",
linewidth=1,
tmp_name=".tmp.png",
) -> np.ndarray:
dpi = 300
oh, ow, _ = image.shape
plt.close()
plt.figure(1, figsize=(oh / dpi, ow / dpi))
plt.imshow(image)
if isinstance(color, str):
color = [color for _ in bbox]
for (x0, y0, x1, y1), c in zip(bbox, color):
plt.gca().add_patch(Rectangle((x0, y0), x1 - x0, y1 - y0, lw=linewidth, edgecolor=c, facecolor=(0, 0, 0, 0)))
plt.axis("off")
plt.savefig(tmp_name, format="png", dpi=dpi, bbox_inches="tight", pad_inches=0.0)
image = cv2.resize(load_image(tmp_name), dsize=(ow, oh))
os.remove(tmp_name)
plt.close()
return image
def draw_scatter(
image: np.ndarray,
points: list[list[int]],
color: str or list[str] = "g",
marker="*",
s=10,
ew=0.25,
tmp_name=".tmp.png",
) -> np.ndarray:
dpi = 300
oh, ow, _ = image.shape
plt.close()
plt.figure(1, figsize=(oh / dpi, ow / dpi))
plt.imshow(image)
if isinstance(color, str):
color = [color for _ in points]
for (x, y), c in zip(points, color):
plt.scatter(x, y, color=c, marker=marker, s=s, edgecolors="white", linewidths=ew)
plt.axis("off")
plt.savefig(tmp_name, format="png", dpi=dpi, bbox_inches="tight", pad_inches=0.0)
image = cv2.resize(load_image(tmp_name), dsize=(ow, oh))
os.remove(tmp_name)
plt.close()
return image
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str)
parser.add_argument("--weight_url", type=str, default=None)
parser.add_argument("--multimask", action="store_true")
parser.add_argument("--image_path", type=str, default="assets/fig/cat.jpg")
parser.add_argument("--output_path", type=str, default="assets/demo/efficientvit_sam_demo.png")
parser.add_argument("--mode", type=str, default="all", choices=["point", "box", "all"])
parser.add_argument("--point", type=str, default=None)
parser.add_argument("--box", type=str, default=None)
# EfficientViTSamAutomaticMaskGenerator args
parser.add_argument("--pred_iou_thresh", type=float, default=0.8)
parser.add_argument("--stability_score_thresh", type=float, default=0.85)
parser.add_argument("--min_mask_region_area", type=float, default=100)
args, opt = parser.parse_known_args()
opt = parse_unknown_args(opt)
# build model
efficientvit_sam = create_sam_model(args.model, True, args.weight_url).cuda().eval()
efficientvit_sam_predictor = EfficientViTSamPredictor(efficientvit_sam)
efficientvit_mask_generator = EfficientViTSamAutomaticMaskGenerator(
efficientvit_sam,
pred_iou_thresh=args.pred_iou_thresh,
stability_score_thresh=args.stability_score_thresh,
min_mask_region_area=args.min_mask_region_area,
**build_kwargs_from_config(opt, EfficientViTSamAutomaticMaskGenerator),
)
# load image
raw_image = np.array(Image.open(args.image_path).convert("RGB"))
H, W, _ = raw_image.shape
print(f"Image Size: W={W}, H={H}")
tmp_file = f".tmp_{time.time()}.png"
if args.mode == "all":
masks = efficientvit_mask_generator.generate(raw_image)
plt.figure(figsize=(20, 20))
plt.imshow(raw_image)
show_anns(masks)
plt.axis("off")
plt.savefig(args.output_path, format="png", dpi=300, bbox_inches="tight", pad_inches=0.0)
elif args.mode == "point":
args.point = yaml.safe_load(args.point or f"[[{W // 2},{H // 2},{1}]]")
point_coords = [(x, y) for x, y, _ in args.point]
point_labels = [l for _, _, l in args.point]
efficientvit_sam_predictor.set_image(raw_image)
masks, _, _ = efficientvit_sam_predictor.predict(
point_coords=np.array(point_coords),
point_labels=np.array(point_labels),
multimask_output=args.multimask,
)
plots = [
draw_scatter(
draw_binary_mask(raw_image, binary_mask, (0, 0, 255)),
point_coords,
color=["g" if l == 1 else "r" for l in point_labels],
s=10,
ew=0.25,
tmp_name=tmp_file,
)
for binary_mask in masks
]
plots = cat_images(plots, axis=1)
Image.fromarray(plots).save(args.output_path)
elif args.mode == "box":
args.box = yaml.safe_load(args.box)
efficientvit_sam_predictor.set_image(raw_image)
masks, _, _ = efficientvit_sam_predictor.predict(
point_coords=None,
point_labels=None,
box=np.array(args.box),
multimask_output=args.multimask,
)
plots = [
draw_bbox(
draw_binary_mask(raw_image, binary_mask, (0, 0, 255)),
[args.box],
color="g",
tmp_name=tmp_file,
)
for binary_mask in masks
]
plots = cat_images(plots, axis=1)
Image.fromarray(plots).save(args.output_path)
else:
raise NotImplementedError
if __name__ == "__main__":
main()