-
Notifications
You must be signed in to change notification settings - Fork 0
/
Pseudo1030ybrnSNPs.R
372 lines (310 loc) · 17.9 KB
/
Pseudo1030ybrnSNPs.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
setwd("/Users/libbynatola/Documents/UBC/Bioinformatics/wgs")
# Load functions
source ("plumage/genomics_R_functions_V2.R")
# install.packages("dplyr")
library(dplyr) #DI ADDED THIS
# read in sample data
wgs_sample_info <- read.table("sample_info.txt", fill = T, sep="\t", header=T)
# read in genomic data
base.file.name <- "genotype.x.individual/wgs_SNPs_filtered_missing80_mindepth3_nowisa.chroms_renamed_num.1030_ybrn_fixedsnps.males"
pos <- read.table(paste0(base.file.name, ".012.pos"), col.names = c("chrom", "position"))
column_names <- c("null", paste("c", pos$chrom, pos$position, sep="."))
geno <- read.table(paste0(base.file.name, ".012NA"), colClasses = "integer", col.names = column_names)
SNPnum <- length(geno[1,]) -1 # because the first column is not a SNP (just a count from zero)
ind <- read.table(paste0(base.file.name, ".012.indv"))
#get location data from pg_sample_info and ind, so the pg_sample_info is in the right order
colnames(ind) <- "ID"
sample_info_ordered <- left_join(ind, wgs_sample_info)
colnames(sample_info_ordered) <- c("ID", "MuseumID", "Institution", "group", "location", "date", "lat", "lon", "sex")
# indicate name of metadata file, a text file with these column headings, make the chin phenotypes the different groups:
# ID location group Fst_group plot_order
sample_info_ordered$Fst_group <- sample_info_ordered$group
locations <- as.data.frame(cbind(sample_info_ordered$ID, sample_info_ordered$location, sample_info_ordered$Fst_group ))
colnames(locations) <- c("ID", "location", "Fst_group")
# add plot order column
plot_order <- NULL
for (i in 1:nrow(locations)) {
tmp <- if (locations[i,3] == "RBSAd") {
print(7)
} else if (locations[i,3] == "RBSAr") {
print(6)
} else if (locations[i,3] == "RBxRN") {
print(5)
} else if (locations[i,3] == "RNSA") {
print(4)
} else if (locations[i,3] == "RNxYB") {
print(3)
} else if (locations[i,3] == "YBxRB") {
print(2)
} else {
print(1)
}
plot_order[i]<- tmp
}
locations$plot_order <- plot_order
locations <- locations[(order(locations$plot_order)),]
sample_info_ordered$plot_order <- plot_order
#order by plot order
sample_info_ordered <- sample_info_ordered[order(sample_info_ordered$plot_order),]
geno1 <- cbind(ind, geno)
geno2 <- geno1[order(match(geno1$ID, sample_info_ordered$ID)), ]
geno3 <- geno2[,-c(1)]
### DI: NOTE THAT geno3 STILL HAS A COLUMN CALLED "null" AT THE START, WHICH WERE ROW NUMBERS FROM 0 ON UP
# I THINK NEED TO REMOVE THIS, SO ADDING THIS LINE:
geno4 <- geno3[, -1]
start.pos <- min(pos$position)
end.pos <- max(pos$position)
num.inds <- nrow(geno4)
num_loc_cols <- length(locations[1,])
# NOT THE NUMBER OF COLUMNS IN geno. IN THIS CASE, num_loc_cols SHOULD BE ZERO, SO ADDING THIS NEXT LINE:
plot.group.colors <- c("#dddf5bff", "#c6924dff", "#2f5734ff", "#394ca2ff", "#b26ec4ff", "#bd5757ff","#bd7777ff")
plot.groups <- unique(locations$Fst_group)
plot.groups2 <- unique(locations$plot_order)
SNP.positions_to_plot <- pos$position
num.inds <- nrow(geno4)
# Calculate allele freqs and sample sizes (use column Fst_group)
groups <- c("YBSA", "YBxRB", "RNxYB", "RNSA", "RBxRN", "RBSAr", "RBSAd")
combo <- cbind(locations, geno4)
temp.list <- getFreqsAndSampleSizes(combo, num_loc_cols, groups)
SNP.freqs <- temp.list$freqs
sample_size <- temp.list$sample_size
rm(temp.list)
group1 <- "YBSA"
#Get the genotypes for each bird at each snp
SNP.genotypes <- combo[,c(rep(TRUE, times=num_loc_cols))]
#narrow down to just the plot.groups you want
SNP.genotypes.subset <- SNP.genotypes[SNP.genotypes$Fst_group %in% plot.groups,]
alt.allele.hi.in.group1 <- which(SNP.freqs[rownames(SNP.freqs)==group1,] > 0.5) + num_loc_cols
SNP.genotypes.subset[,alt.allele.hi.in.group1] <- -1*SNP.genotypes.subset[,alt.allele.hi.in.group1] + 2
# plot everyone
#pdf("genotype.x.individual/Pseudo1030ybrnSNPs.pdf", width=12, height=12)
chr.length <- max(pos$position)
genotype.colors <- c("#3f007d", "#807dba", "#dadaeb", "grey50") # purple shades from colorbrewer
chr <- "Pseudo1030"
start.pos <- min(pos$position)
end.pos <- max(pos$position)
# choose which type to plot: 1=nucleotide positions; 2=spaced evenly; 3= both
plot.along.chromosome.type <- 2
# plot along chromosome by nucleotide position:
if (plot.along.chromosome.type == 1 | plot.along.chromosome.type == 3) {
plot(x=NULL, y=NULL, xlim=c(start.pos, end.pos+0.05*(end.pos-start.pos)), ylim=c(0, num.inds+1), main=paste0("Fixed FST SNPs on Pseudo1030 males"),xlab=paste0("Location along chromosome"), ylab="Individual")
# generate my own plotting symbol (a rectangle)
symbol.x <- c(-0.1, -0.1, 0.1, 0.1, -0.1)
symbol.y <- c(1, -1, -1, 1, 1)
plot.symbol <- cbind(symbol.x, symbol.y)
symbol.size.x <- 5000 #width of box in nucleotides
symbol.size.y <- 0.8 #height of box in units of individuals
# cycle through individuals, graphing each type of genotype:
for (i in 1:num.inds) {
y <- (1*i)+num.inds+1 #reverses order of plot top-bottom if (1*i) changed to (-1*i)
lines(x = c(start.pos,end.pos), y = c(y,y), col = "grey")
text(x = end.pos, y = y, labels=unlist(strsplit(as.character(sample_info_ordered$ID[i]), split='_', fixed=TRUE))[3], cex=0.3, pos=4)
genotypes <- SNP.genotypes.subset[i, (num_loc_cols+1):length(SNP.genotypes.subset[1,])]
hom.ref.locs <- SNP.positions_to_plot[genotypes == 0 & !is.na(genotypes)]
my.symbols(hom.ref.locs, rep(y, times=length(hom.ref.locs)), plot.symbol, xsize=symbol.size.x, ysize=symbol.size.y, col="red")
het.locs <- SNP.positions_to_plot[genotypes == 1 & !is.na(genotypes)]
my.symbols(het.locs, rep(y, times=length(het.locs)), plot.symbol, xsize=symbol.size.x, ysize=symbol.size.y, col="orange")
hom.alt.locs <- SNP.positions_to_plot[genotypes == 2 & !is.na(genotypes)]
my.symbols(hom.alt.locs, rep(y, times=length(hom.alt.locs)), plot.symbol, xsize=symbol.size.x, ysize=symbol.size.y, col="yellow")
}
}
# plot evenly spaced by SNP order along chromosome:
# make top part of fig (genotypes for individuals)
if (plot.along.chromosome.type == 2 | plot.along.chromosome.type == 3) {
num.SNPs.to.plot <- length(SNP.positions_to_plot)
plot(x=NULL, y=NULL, xlim=c(0.5-0.07*(num.SNPs.to.plot+0.5), 1.07*(num.SNPs.to.plot+0.5)), ylim=c(0.5-0.25*num.inds, num.inds+1), main=paste0("Fixed FST SNPs on Pseudo1030 males"),xlab=paste0("Order along chromosome"), ylab="Individual")
image.matrix <- t(as.matrix(SNP.genotypes.subset[, (num_loc_cols):length(SNP.genotypes.subset[1,])]))
image.matrix[is.na(image.matrix)] <- 3
group.color.box.loc.right <- 1.055*(num.SNPs.to.plot+0.5)
group.color.box.loc.left <- 0.5-0.055*(num.SNPs.to.plot+0.5)
box.width <- 0.005*num.SNPs.to.plot * 2
group.color.box.x.right <- c(-box.width, -box.width, box.width, box.width, -box.width) + group.color.box.loc.right
group.color.box.x.left <- c(-box.width, -box.width, box.width, box.width, -box.width) + group.color.box.loc.left
group.color.box.y <- c(0.4, -0.4, -0.4, 0.4, 0.4)
for (i in 1:num.inds) {
y <- (-1*i)+num.inds+1 #reverses order of plot top-bottom
name.text.bits <- unlist(strsplit(as.character(sample_info_ordered$ID[y]), split='_', fixed=TRUE))
label.text <- name.text.bits[length(name.text.bits)]
text(x = num.SNPs.to.plot+0.5, y = y, labels=label.text, cex=0.3, pos=4)
text(x = 0.5, y = y, labels=label.text, cex=0.3, pos=2)
polygon(group.color.box.x.right, y+group.color.box.y, border=NA, col=plot.group.colors[which(plot.groups2==locations$plot_order[y])])
polygon(group.color.box.x.left, y+group.color.box.y, border=NA, col=plot.group.colors[which(plot.groups2==locations$plot_order[y])])
}
# generate my own plotting symbol (a rectangle)
symbol.x <- c(-0.5, -0.5, 0.5, 0.5, -0.5)
symbol.y <- c(0.4, -0.4, -0.4, 0.4, 0.4)
# generate triangles for plotting heterozygotes
triangle1.x <- c(-0.5, -0.5, 0.5, -0.5)
triangle1.y <- c(0.4, -0.4, 0.4, 0.4)
triangle2.x <- c(-0.5, 0.5, 0.5, -0.5)
triangle2.y <- c(-0.4, -0.4, 0.4, -0.4)
# cycle through individuals, graphing each type of genotype:
for (i in 1:num.inds) {
y <- (-1*i)+num.inds+1 #reverses order of plot top-bottom
lines(x = c(0.5,num.SNPs.to.plot+0.5), y = c(y,y), col = "grey40")
genotypes <- SNP.genotypes.subset[y, (num_loc_cols+1):length(SNP.genotypes.subset[1,])]
hom.ref.locs <- which(genotypes == 0 & !is.na(genotypes))
if (length(hom.ref.locs) > 0) {
for (j in 1:length(hom.ref.locs)) {
polygon(hom.ref.locs[j]+symbol.x, y+symbol.y, border=NA, col=genotype.colors[1])
}
}
het.locs <- which(genotypes == 1 & !is.na(genotypes))
if (length(het.locs) > 0) {
for (j in 1:length(het.locs)) {
#polygon(het.locs[j]+symbol.x, y+symbol.y, border=NA, col=genotype.colors[2]) # draws rectangle in hetero color
polygon(het.locs[j]+triangle1.x, y+triangle1.y, border=NA, col=genotype.colors[1]) # draws triangle in hom ref color
polygon(het.locs[j]+triangle2.x, y+triangle2.y, border=NA, col=genotype.colors[3]) # draws triangle in hom alt color
}
}
hom.alt.locs <- which(genotypes == 2 & !is.na(genotypes))
if (length(hom.alt.locs) > 0) {
for (j in 1:length(hom.alt.locs)) {
polygon(hom.alt.locs[j]+symbol.x, y+symbol.y, border=NA, col=genotype.colors[3])
}
}
}
}
# make lower part of figure (indicating position along chromosome) #NOTE THAT CHROMOSOME LENGTH NOT QUITE THE TRUE LENGTH
chr.line.y <- 0.5-0.2*num.inds
top.hatch.line.y1 <- 0.5-0.005*num.inds
top.hatch.line.y2 <- 0.5-0.02*num.inds
low.hatch.line.y1 <- 0.5-0.18*num.inds
low.hatch.line.y2 <- 0.5-0.2*num.inds
lines(x = c(0.5,num.SNPs.to.plot+0.5), y = c(chr.line.y,chr.line.y), lwd=4, col = "black") #draws chromosome line
text(x=(0.5+(num.SNPs.to.plot+0.5)/2), y=chr.line.y-0.05*num.inds, paste0("Location along chromosome ",chr, sep=""))
text(x=0.5, y=chr.line.y-0.025*num.inds, start.pos)
text(x=num.SNPs.to.plot+0.5, y=chr.line.y-0.025*num.inds, end.pos)
chr.plot.ratio <- num.SNPs.to.plot/(end.pos-start.pos)
for (i in 1:length(SNP.positions_to_plot)) {
lines(x=c(i,i), y=c(top.hatch.line.y1, top.hatch.line.y2), lwd=0.5, col="grey20")
lines(x=c(i, 1+chr.plot.ratio*(SNP.positions_to_plot[i]-start.pos)), y=c(top.hatch.line.y2, low.hatch.line.y1), lwd=0.5, col="grey20")
lines(x=c(1+chr.plot.ratio*(SNP.positions_to_plot[i]-start.pos), 1+chr.plot.ratio*(SNP.positions_to_plot[i]-start.pos)), y=c(low.hatch.line.y1, low.hatch.line.y2), lwd=0.5, col="grey20")
}
#dev.off()
## ybrn only
plot.group.colors <- c("#dddf5bff", "#2f5734ff", "#394ca2ff")
plot.groups <- c("YBSA", "RNxYB", "RNSA")
plot.groups2 <- c(1,3,4)
SNP.positions_to_plot <- pos$position
num.inds <- nrow(geno4)
# Calculate allele freqs and sample sizes (use column Fst_group)
groups <- c("YBSA", "RNxYB", "RNSA")
combo <- cbind(locations, geno4)
temp.list <- getFreqsAndSampleSizes(combo, num_loc_cols, groups)
SNP.freqs <- temp.list$freqs
sample_size <- temp.list$sample_size
rm(temp.list)
group1 <- "RNSA"
#Get the genotypes for each bird at each snp
SNP.genotypes <- combo[,c(rep(TRUE, times=num_loc_cols))]
#narrow down to just the plot.groups you want
SNP.genotypes.subset <- SNP.genotypes[SNP.genotypes$Fst_group %in% plot.groups,]
num.inds <- nrow(SNP.genotypes.subset)
alt.allele.hi.in.group1 <- which(SNP.freqs[rownames(SNP.freqs)==group1,] > 0.5) + num_loc_cols
SNP.genotypes.subset[,alt.allele.hi.in.group1] <- -1*SNP.genotypes.subset[,alt.allele.hi.in.group1] + 2
#pdf("genotype.x.individual/Pseudo1030ybrnSNPs_ybrnonly.pdf", width=12, height=12)
chr.length <- max(pos$position)
genotype.colors <- c("#3f007d", "#807dba", "#dadaeb", "grey50") # purple shades from colorbrewer
chr <- "Pseudo1030"
start.pos <- min(pos$position)
end.pos <- max(pos$position)
# choose which type to plot: 1=nucleotide positions; 2=spaced evenly; 3= both
plot.along.chromosome.type <- 2
# plot along chromosome by nucleotide position:
if (plot.along.chromosome.type == 1 | plot.along.chromosome.type == 3) {
plot(x=NULL, y=NULL, xlim=c(start.pos, end.pos+0.05*(end.pos-start.pos)), ylim=c(0, num.inds+1), main=paste0("Fixed YBxRN FST SNPs on Pseudo1030 males"),xlab=paste0("Location along chromosome"), ylab="Individual")
# generate my own plotting symbol (a rectangle)
symbol.x <- c(-0.1, -0.1, 0.1, 0.1, -0.1)
symbol.y <- c(1, -1, -1, 1, 1)
plot.symbol <- cbind(symbol.x, symbol.y)
symbol.size.x <- 5000 #width of box in nucleotides
symbol.size.y <- 0.8 #height of box in units of individuals
# cycle through individuals, graphing each type of genotype:
for (i in 1:num.inds) {
y <- (1*i)+num.inds+1 #reverses order of plot top-bottom if (1*i) changed to (-1*i)
lines(x = c(start.pos,end.pos), y = c(y,y), col = "grey")
text(x = end.pos, y = y, labels=unlist(strsplit(as.character(SNP.genotypes.subset$ID[i]), split='_', fixed=TRUE))[3], cex=0.3, pos=4)
genotypes <- SNP.genotypes.subset[i, (num_loc_cols+1):length(SNP.genotypes.subset[1,])]
hom.ref.locs <- SNP.positions_to_plot[genotypes == 0 & !is.na(genotypes)]
my.symbols(hom.ref.locs, rep(y, times=length(hom.ref.locs)), plot.symbol, xsize=symbol.size.x, ysize=symbol.size.y, col="red")
het.locs <- SNP.positions_to_plot[genotypes == 1 & !is.na(genotypes)]
my.symbols(het.locs, rep(y, times=length(het.locs)), plot.symbol, xsize=symbol.size.x, ysize=symbol.size.y, col="orange")
hom.alt.locs <- SNP.positions_to_plot[genotypes == 2 & !is.na(genotypes)]
my.symbols(hom.alt.locs, rep(y, times=length(hom.alt.locs)), plot.symbol, xsize=symbol.size.x, ysize=symbol.size.y, col="yellow")
}
}
# plot evenly spaced by SNP order along chromosome:
# make top part of fig (genotypes for individuals)
if (plot.along.chromosome.type == 2 | plot.along.chromosome.type == 3) {
num.SNPs.to.plot <- length(SNP.positions_to_plot)
plot(x=NULL, y=NULL, xlim=c(0.5-0.07*(num.SNPs.to.plot+0.5), 1.07*(num.SNPs.to.plot+0.5)), ylim=c(0.5-0.25*num.inds, num.inds+1), main=paste0("Fixed YBxRN FST SNPs on Pseudo1030 males"),xlab=paste0("Order along chromosome"), ylab="Individual")
image.matrix <- t(as.matrix(SNP.genotypes.subset[, (num_loc_cols):length(SNP.genotypes.subset[1,])]))
image.matrix[is.na(image.matrix)] <- 3
group.color.box.loc.right <- 1.055*(num.SNPs.to.plot+0.5)
group.color.box.loc.left <- 0.5-0.055*(num.SNPs.to.plot+0.5)
box.width <- 0.005*num.SNPs.to.plot * 2
group.color.box.x.right <- c(-box.width, -box.width, box.width, box.width, -box.width) + group.color.box.loc.right
group.color.box.x.left <- c(-box.width, -box.width, box.width, box.width, -box.width) + group.color.box.loc.left
group.color.box.y <- c(0.4, -0.4, -0.4, 0.4, 0.4)
for (i in 1:num.inds) {
y <- (-1*i)+num.inds+1 #reverses order of plot top-bottom
name.text.bits <- unlist(strsplit(as.character(SNP.genotypes.subset$ID[y]), split='_', fixed=TRUE))
label.text <- name.text.bits[length(name.text.bits)]
text(x = num.SNPs.to.plot+0.5, y = y, labels=label.text, cex=0.4, pos=4)
text(x = 0.5, y = y, labels=label.text, cex=0.4, pos=2)
polygon(group.color.box.x.right, y+group.color.box.y, border=NA, col=plot.group.colors[which(plot.groups2==SNP.genotypes.subset$plot_order[y])])
polygon(group.color.box.x.left, y+group.color.box.y, border=NA, col=plot.group.colors[which(plot.groups2==SNP.genotypes.subset$plot_order[y])])
}
# generate my own plotting symbol (a rectangle)
symbol.x <- c(-0.5, -0.5, 0.5, 0.5, -0.5)
symbol.y <- c(0.4, -0.4, -0.4, 0.4, 0.4)
# generate triangles for plotting heterozygotes
triangle1.x <- c(-0.5, -0.5, 0.5, -0.5)
triangle1.y <- c(0.4, -0.4, 0.4, 0.4)
triangle2.x <- c(-0.5, 0.5, 0.5, -0.5)
triangle2.y <- c(-0.4, -0.4, 0.4, -0.4)
# cycle through individuals, graphing each type of genotype:
for (i in 1:num.inds) {
y <- (-1*i)+num.inds+1 #reverses order of plot top-bottom
lines(x = c(0.5,num.SNPs.to.plot+0.5), y = c(y,y), col = "grey40")
genotypes <- SNP.genotypes.subset[y, (num_loc_cols+1):length(SNP.genotypes.subset[1,])]
hom.ref.locs <- which(genotypes == 0 & !is.na(genotypes))
if (length(hom.ref.locs) > 0) {
for (j in 1:length(hom.ref.locs)) {
polygon(hom.ref.locs[j]+symbol.x, y+symbol.y, border=NA, col=genotype.colors[1])
}
}
het.locs <- which(genotypes == 1 & !is.na(genotypes))
if (length(het.locs) > 0) {
for (j in 1:length(het.locs)) {
#polygon(het.locs[j]+symbol.x, y+symbol.y, border=NA, col=genotype.colors[2]) # draws rectangle in hetero color
polygon(het.locs[j]+triangle1.x, y+triangle1.y, border=NA, col=genotype.colors[1]) # draws triangle in hom ref color
polygon(het.locs[j]+triangle2.x, y+triangle2.y, border=NA, col=genotype.colors[3]) # draws triangle in hom alt color
}
}
hom.alt.locs <- which(genotypes == 2 & !is.na(genotypes))
if (length(hom.alt.locs) > 0) {
for (j in 1:length(hom.alt.locs)) {
polygon(hom.alt.locs[j]+symbol.x, y+symbol.y, border=NA, col=genotype.colors[3])
}
}
}
}
# make lower part of figure (indicating position along chromosome) #NOTE THAT CHROMOSOME LENGTH NOT QUITE THE TRUE LENGTH
chr.line.y <- 0.5-0.2*num.inds
top.hatch.line.y1 <- 0.5-0.005*num.inds
top.hatch.line.y2 <- 0.5-0.02*num.inds
low.hatch.line.y1 <- 0.5-0.18*num.inds
low.hatch.line.y2 <- 0.5-0.2*num.inds
lines(x = c(0.5,num.SNPs.to.plot+0.5), y = c(chr.line.y,chr.line.y), lwd=4, col = "black") #draws chromosome line
text(x=(0.5+(num.SNPs.to.plot+0.5)/2), y=chr.line.y-0.05*num.inds, paste0("Location along chromosome ",chr, sep=""))
text(x=0.5, y=chr.line.y-0.025*num.inds, start.pos)
text(x=num.SNPs.to.plot+0.5, y=chr.line.y-0.025*num.inds, end.pos)
chr.plot.ratio <- num.SNPs.to.plot/(end.pos-start.pos)
for (i in 1:length(SNP.positions_to_plot)) {
lines(x=c(i,i), y=c(top.hatch.line.y1, top.hatch.line.y2), lwd=0.5, col="grey20")
lines(x=c(i, 1+chr.plot.ratio*(SNP.positions_to_plot[i]-start.pos)), y=c(top.hatch.line.y2, low.hatch.line.y1), lwd=0.5, col="grey20")
lines(x=c(1+chr.plot.ratio*(SNP.positions_to_plot[i]-start.pos), 1+chr.plot.ratio*(SNP.positions_to_plot[i]-start.pos)), y=c(low.hatch.line.y1, low.hatch.line.y2), lwd=0.5, col="grey20")
}
#dev.off()