forked from D-X-Y/NAS-Bench-201
-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.py
executable file
·335 lines (279 loc) · 13.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
from __future__ import division
import os, sys, pdb, shutil, time, random, copy
import argparse
import torch
import torch.backends.cudnn as cudnn
import torchvision.datasets as dset
import torchvision.transforms as transforms
from utils import AverageMeter, RecorderMeter, time_string, convert_secs2time
import models
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
parser = argparse.ArgumentParser(description='Trains ResNeXt on CIFAR or ImageNet', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('data_path', type=str, help='Path to dataset')
parser.add_argument('--dataset', type=str, choices=['cifar10', 'cifar100', 'imagenet', 'svhn', 'stl10'], help='Choose between Cifar10/100 and ImageNet.')
parser.add_argument('--arch', metavar='ARCH', default='resnet18', choices=model_names, help='model architecture: ' + ' | '.join(model_names) + ' (default: resnext29_8_64)')
# Optimization options
parser.add_argument('--epochs', type=int, default=300, help='Number of epochs to train.')
parser.add_argument('--batch_size', type=int, default=128, help='Batch size.')
parser.add_argument('--learning_rate', type=float, default=0.1, help='The Learning Rate.')
parser.add_argument('--momentum', type=float, default=0.9, help='Momentum.')
parser.add_argument('--decay', type=float, default=0.0005, help='Weight decay (L2 penalty).')
parser.add_argument('--schedule', type=int, nargs='+', default=[150, 225], help='Decrease learning rate at these epochs.')
parser.add_argument('--gammas', type=float, nargs='+', default=[0.1, 0.1], help='LR is multiplied by gamma on schedule, number of gammas should be equal to schedule')
# Checkpoints
parser.add_argument('--print_freq', default=200, type=int, metavar='N', help='print frequency (default: 200)')
parser.add_argument('--save_path', type=str, default='./', help='Folder to save checkpoints and log.')
parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)')
parser.add_argument('--evaluate', dest='evaluate', action='store_true', help='evaluate model on validation set')
# Acceleration
parser.add_argument('--ngpu', type=int, default=1, help='0 = CPU.')
parser.add_argument('--workers', type=int, default=2, help='number of data loading workers (default: 2)')
# random seed
parser.add_argument('--manualSeed', type=int, help='manual seed')
args = parser.parse_args()
args.use_cuda = args.ngpu>0 and torch.cuda.is_available()
if args.manualSeed is None:
args.manualSeed = random.randint(1, 10000)
random.seed(args.manualSeed)
torch.manual_seed(args.manualSeed)
if args.use_cuda:
torch.cuda.manual_seed_all(args.manualSeed)
cudnn.benchmark = True
def main():
# Init logger
if not os.path.isdir(args.save_path):
os.makedirs(args.save_path)
log = open(os.path.join(args.save_path, 'log_seed_{}.txt'.format(args.manualSeed)), 'w')
print_log('save path : {}'.format(args.save_path), log)
state = {k: v for k, v in args._get_kwargs()}
print_log(state, log)
print_log("Random Seed: {}".format(args.manualSeed), log)
print_log("python version : {}".format(sys.version.replace('\n', ' ')), log)
print_log("torch version : {}".format(torch.__version__), log)
print_log("cudnn version : {}".format(torch.backends.cudnn.version()), log)
# Init dataset
if not os.path.isdir(args.data_path):
os.makedirs(args.data_path)
if args.dataset == 'cifar10':
mean = [x / 255 for x in [125.3, 123.0, 113.9]]
std = [x / 255 for x in [63.0, 62.1, 66.7]]
elif args.dataset == 'cifar100':
mean = [x / 255 for x in [129.3, 124.1, 112.4]]
std = [x / 255 for x in [68.2, 65.4, 70.4]]
else:
assert False, "Unknow dataset : {}".format(args.dataset)
train_transform = transforms.Compose(
[transforms.RandomHorizontalFlip(), transforms.RandomCrop(32, padding=4), transforms.ToTensor(),
transforms.Normalize(mean, std)])
test_transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize(mean, std)])
if args.dataset == 'cifar10':
train_data = dset.CIFAR10(args.data_path, train=True, transform=train_transform, download=True)
test_data = dset.CIFAR10(args.data_path, train=False, transform=test_transform, download=True)
num_classes = 10
elif args.dataset == 'cifar100':
train_data = dset.CIFAR100(args.data_path, train=True, transform=train_transform, download=True)
test_data = dset.CIFAR100(args.data_path, train=False, transform=test_transform, download=True)
num_classes = 100
elif args.dataset == 'svhn':
train_data = dset.SVHN(args.data_path, split='train', transform=train_transform, download=True)
test_data = dset.SVHN(args.data_path, split='test', transform=test_transform, download=True)
num_classes = 10
elif args.dataset == 'stl10':
train_data = dset.STL10(args.data_path, split='train', transform=train_transform, download=True)
test_data = dset.STL10(args.data_path, split='test', transform=test_transform, download=True)
num_classes = 10
elif args.dataset == 'imagenet':
assert False, 'Do not finish imagenet code'
else:
assert False, 'Do not support dataset : {}'.format(args.dataset)
train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True)
test_loader = torch.utils.data.DataLoader(test_data, batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
print_log("=> creating model '{}'".format(args.arch), log)
# Init model, criterion, and optimizer
net = models.__dict__[args.arch](num_classes)
print_log("=> network :\n {}".format(net), log)
net = torch.nn.DataParallel(net, device_ids=list(range(args.ngpu)))
# define loss function (criterion) and optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(net.parameters(), state['learning_rate'], momentum=state['momentum'],
weight_decay=state['decay'], nesterov=True)
if args.use_cuda:
net.cuda()
criterion.cuda()
recorder = RecorderMeter(args.epochs)
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print_log("=> loading checkpoint '{}'".format(args.resume), log)
checkpoint = torch.load(args.resume)
recorder = checkpoint['recorder']
args.start_epoch = checkpoint['epoch']
net.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print_log("=> loaded checkpoint '{}' (epoch {})" .format(args.resume, checkpoint['epoch']), log)
else:
raise ValueError("=> no checkpoint found at '{}'".format(args.resume))
else:
print_log("=> do not use any checkpoint for {} model".format(args.arch), log)
if args.evaluate:
validate(test_loader, net, criterion, log)
return
# Main loop
start_time = time.time()
epoch_time = AverageMeter()
for epoch in range(args.start_epoch, args.epochs):
current_learning_rate = adjust_learning_rate(optimizer, epoch, args.gammas, args.schedule)
need_hour, need_mins, need_secs = convert_secs2time(epoch_time.avg * (args.epochs-epoch))
need_time = '[Need: {:02d}:{:02d}:{:02d}]'.format(need_hour, need_mins, need_secs)
print_log('\n==>>{:s} [Epoch={:03d}/{:03d}] {:s} [learning_rate={:6.4f}]'.format(time_string(), epoch, args.epochs, need_time, current_learning_rate) \
+ ' [Best : Accuracy={:.2f}, Error={:.2f}]'.format(recorder.max_accuracy(False), 100-recorder.max_accuracy(False)), log)
# train for one epoch
train_acc, train_los = train(train_loader, net, criterion, optimizer, epoch, log)
# evaluate on validation set
#val_acc, val_los = extract_features(test_loader, net, criterion, log)
val_acc, val_los = validate(test_loader, net, criterion, log)
is_best = recorder.update(epoch, train_los, train_acc, val_los, val_acc)
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': net.state_dict(),
'recorder': recorder,
'optimizer' : optimizer.state_dict(),
'args' : copy.deepcopy(args),
}, is_best, args.save_path, 'checkpoint.pth.tar')
# measure elapsed time
epoch_time.update(time.time() - start_time)
start_time = time.time()
recorder.plot_curve( os.path.join(args.save_path, 'curve.png') )
log.close()
# train function (forward, backward, update)
def train(train_loader, model, criterion, optimizer, epoch, log):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to train mode
model.train()
end = time.time()
for i, (input, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
if args.use_cuda:
target = target.cuda(async=True)
input = input.cuda()
input_var = torch.autograd.Variable(input)
target_var = torch.autograd.Variable(target)
# compute output
output = model(input_var)
loss = criterion(output, target_var)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
losses.update(loss.data[0], input.size(0))
top1.update(prec1[0], input.size(0))
top5.update(prec5[0], input.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print_log(' Epoch: [{:03d}][{:03d}/{:03d}] '
'Time {batch_time.val:.3f} ({batch_time.avg:.3f}) '
'Data {data_time.val:.3f} ({data_time.avg:.3f}) '
'Loss {loss.val:.4f} ({loss.avg:.4f}) '
'Prec@1 {top1.val:.3f} ({top1.avg:.3f}) '
'Prec@5 {top5.val:.3f} ({top5.avg:.3f}) '.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top5=top5) + time_string(), log)
print_log(' **Train** Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f} Error@1 {error1:.3f}'.format(top1=top1, top5=top5, error1=100-top1.avg), log)
return top1.avg, losses.avg
def validate(val_loader, model, criterion, log):
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
for i, (input, target) in enumerate(val_loader):
if args.use_cuda:
target = target.cuda(async=True)
input = input.cuda()
input_var = torch.autograd.Variable(input, volatile=True)
target_var = torch.autograd.Variable(target, volatile=True)
# compute output
output = model(input_var)
loss = criterion(output, target_var)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
losses.update(loss.data[0], input.size(0))
top1.update(prec1[0], input.size(0))
top5.update(prec5[0], input.size(0))
print_log(' **Test** Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f} Error@1 {error1:.3f}'.format(top1=top1, top5=top5, error1=100-top1.avg), log)
return top1.avg, losses.avg
def extract_features(val_loader, model, criterion, log):
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
for i, (input, target) in enumerate(val_loader):
if args.use_cuda:
target = target.cuda(async=True)
input = input.cuda()
input_var = torch.autograd.Variable(input, volatile=True)
target_var = torch.autograd.Variable(target, volatile=True)
# compute output
output, features = model([input_var])
pdb.set_trace()
loss = criterion(output, target_var)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
losses.update(loss.data[0], input.size(0))
top1.update(prec1[0], input.size(0))
top5.update(prec5[0], input.size(0))
print_log(' **Test** Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f} Error@1 {error1:.3f}'.format(top1=top1, top5=top5, error1=100-top1.avg), log)
return top1.avg, losses.avg
def print_log(print_string, log):
print("{}".format(print_string))
log.write('{}\n'.format(print_string))
log.flush()
def save_checkpoint(state, is_best, save_path, filename):
filename = os.path.join(save_path, filename)
torch.save(state, filename)
if is_best:
bestname = os.path.join(save_path, 'model_best.pth.tar')
shutil.copyfile(filename, bestname)
def adjust_learning_rate(optimizer, epoch, gammas, schedule):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = args.learning_rate
assert len(gammas) == len(schedule), "length of gammas and schedule should be equal"
for (gamma, step) in zip(gammas, schedule):
if (epoch >= step):
lr = lr * gamma
else:
break
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
main()