forked from facebookarchive/MemNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
parse.lua
87 lines (83 loc) · 3.02 KB
/
parse.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
-- Copyright (c) 2015-present, Facebook, Inc.
-- All rights reserved.
--
-- This source code is licensed under the BSD-style license found in the
-- LICENSE file in the root directory of this source tree. An additional grant
-- of patent rights can be found in the PATENTS file in the same directory.
local stringx = require('pl.stringx')
local cmd = torch.CmdLine()
cmd:option("-batch_size",32,"batch size")
cmd:option("-token_size",0,"number of tokens")
cmd:option("-dimension",20,"vector dimensionality")
cmd:option("-init_weight",0.1, "initialization weight")
cmd:option("-N_hop",3,"number of MemmNet hops")
cmd:option("-lr",0.01, "initial learning rate")
cmd:option("-thres",40,"threshold for gradient clipping")
cmd:option("-iter_halve_lr",20,"number of iterations after which"
.."start halving learning rate")
cmd:option("-task",1,"")
cmd:option("-gpu_index",1,"")
cmd:option("-policy",0.5,"the rate of correct vs random answers, taking values 0.01, 0.1 or 0.5")
cmd:option("-N_iter",20,"total number of iteration to run")
cmd:option("-dic_file","/mnt/vol/gfsai-east/ai-group/users/jiwei/movieQA/movieQA_dict.txt",
"path to the dictionary file")
cmd:option("-beta",true,"whether use beta for FP");
cmd:option("-negative",5,"number of negative samples");
cmd:option("-dataset","babi","the dataset to use, whether"
.."it is babi or movieQA")
cmd:option("-setting","RBI","the model setting, taking values RBI, FP, IM or RBI+FP")
local params= cmd:parse(arg)
local Tasks={
"rl1_pure_imitation",
"rl2_pos_neg",
"rl3_with_ans",
"rl4_with_hints",
"rl5_told_sf",
"rl6_only_some_rewards",
"rl7_no_feedback",
"rl8_imitation_plus_rl",
"rl9_ask_for_answer",
"rl10_ask_for_sf",
}
if params.setting=="RBI+FP" then
params.policyGrad=true;
params.FP=true;
params.N_hop=2
elseif params.setting=="RBI" then
params.policyGrad=true;
params.FP=false;
params.N_hop=3
elseif params.setting=="FP"then
params.FP=true;
params.policyGrad=false
params.N_hop=1
elseif params.setting=="IM" then
params.policyGrad=false;
params.FP=false
end
if params.dataset=="movieQA" then
params.dic_file="./data/movieQA/dict.txt"
params.trainData="./data/movieQA/movieQA_p"
..params.policy.."_"..Tasks[params.task]..'_train.txt'
params.devData="./data/movieQA/movieQA_dev.txt"
params.testData="./data/movieQA/movieQA_test.txt"
params.dimension=50;
if params.setting=="RBI" or params.setting=="IM" then
params.lr=0.05;
elseif params.setting=="RBI+FP" then
params.lr=0.025;
elseif params.setting=="FP"then
params.lr=0.01
end
elseif params.dataset=="babi" then
params.dic_file="./data/babi/dict.txt"
params.trainData="./data/babi/babi1_p"
..params.policy.."_"..Tasks[params.task]..'_train.txt'
params.devData="./data/babi/babi1_p"
..params.policy.."_"..Tasks[params.task]..'_dev.txt'
params.testData="./data/babi/babi1_p"
..params.policy.."_"..Tasks[params.task]..'_test.txt'
params.lr=0.01
end
print(params)
return params;