Skip to content

Latest commit

 

History

History
134 lines (103 loc) · 4.81 KB

README.md

File metadata and controls

134 lines (103 loc) · 4.81 KB

Portrait Mating implementation in UNet with PyTorch.

Segmentation Demo Result: Segmentation Matting Demo Result: Matting For the convenience of demonstration, I built the API service through Flask, and finally deployed it on WeChat Mini Program. The code part of the WeChat applet is in here portrait-matting-wechat.

Dependencies

  • Python 3.6
  • PyTorch >= 1.1.0
  • Torchvision >= 0.3.0
  • Flask 1.1.1
  • future 0.18.2
  • matplotlib 3.1.3
  • numpy 1.16.0
  • Pillow 6.2.0
  • protobuf 3.11.3
  • tensorboard 1.14.0
  • tqdm==4.42.1

Data

This model was trained from scratch with 18000 images (data augmentation by 2000images) Training dataset was from Deep Automatic Portrait Matting. Your can download in baidu cloud http://pan.baidu.com/s/1dE14537. Password: ndg8 For academic communication only, if there is a quote, please inform the original author!

We augment the number of images by perturbing them withrotation and scaling. Four rotation angles{−45◦,−22◦,22◦,45◦}and four scales{0.6,0.8,1.2,1.5}are used. We also apply four different Gamma transforms toincrease color variation. The Gamma values are{0.5,0.8,1.2,1.5}. After thesetransforms, we have 18K training images.

Run locally

Note : Use Python 3

Prediction

You can easily test the output masks on your images via the CLI.

To predict a single image and save it:

$ python predict.py -i image.jpg -o output.jpg

To predict a multiple images and show them without saving them:

$ python predict.py -i image1.jpg image2.jpg --viz --no-save
> python predict.py -h
usage: predict.py [-h] [--model FILE] --input INPUT [INPUT ...]
                  [--output INPUT [INPUT ...]] [--viz] [--no-save]
                  [--mask-threshold MASK_THRESHOLD] [--scale SCALE]

Predict masks from input images

optional arguments:
  -h, --help            show this help message and exit
  --model FILE, -m FILE
                        Specify the file in which the model is stored
                        (default: MODEL.pth)
  --input INPUT [INPUT ...], -i INPUT [INPUT ...]
                        filenames of input images (default: None)
  --output INPUT [INPUT ...], -o INPUT [INPUT ...]
                        Filenames of ouput images (default: None)
  --viz, -v             Visualize the images as they are processed (default:
                        False)
  --no-save, -n         Do not save the output masks (default: False)
  --mask-threshold MASK_THRESHOLD, -t MASK_THRESHOLD
                        Minimum probability value to consider a mask pixel
                        white (default: 0.5)
  --scale SCALE, -s SCALE
                        Scale factor for the input images (default: 0.5)

You can specify which model file to use with --model MODEL.pth.

Training

> python train.py -h
usage: train.py [-h] [-e E] [-b [B]] [-l [LR]] [-f LOAD] [-s SCALE] [-v VAL]

Train the UNet on images and target masks

optional arguments:
  -h, --help            show this help message and exit
  -e E, --epochs E      Number of epochs (default: 5)
  -b [B], --batch-size [B]
                        Batch size (default: 1)
  -l [LR], --learning-rate [LR]
                        Learning rate (default: 0.1)
  -f LOAD, --load LOAD  Load model from a .pth file (default: False)
  -s SCALE, --scale SCALE
                        Downscaling factor of the images (default: 0.5)
  -v VAL, --validation VAL
                        Percent of the data that is used as validation (0-100)
                        (default: 10.0)

By default, the scale is 0.5, so if you wish to obtain better results (but use more memory), set it to 1.

The input images and target masks should be in the data/imgs and data/masks folders respectively.

Start API service

$ python app.py

Then you can use the model through the API

Run on server

  1. Install virtual environment
  2. Install gunicorn in a virtual environment
  3. Proxy through nginx

Notes on memory

$ python train.py -e 200 -b 1 -l 0.1 -s 0.5 -v 15.0

The model has be trained from scratch on a RTX2080Ti 11GB. 18,000 training dataset, running for 4 days +

Thanks

The birth of this project is inseparable from the following projects:

  • Flask:The Python micro framework for building web applications
  • Pytorch-UNet:PyTorch implementation of the U-Net for image semantic segmentation with high quality images