-
Notifications
You must be signed in to change notification settings - Fork 0
/
Main.py
176 lines (142 loc) · 5.32 KB
/
Main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# to avoid the unwanted warnings
import os
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
# import the libraries needed for the chatbot
import nltk
from nltk.stem.lancaster import LancasterStemmer
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.optimizers import SGD
import pandas as pd
import random
import joblib
import json
import tensorflow as tf
from tensorflow.python.keras.backend import set_session
# import the function from other files
from extractor import extractor
from database_details import insert_details
from database_details import get_database_details
import Database_connector
Database_connector.mycursor()
stemmer = LancasterStemmer()
words = []
classes = []
documents = []
ignore_words = ['?']
with open('Dataset.json') as json_file:
intents = json.load(json_file)
for intent in intents['intents']:
for pattern in intent['patterns']:
w = nltk.word_tokenize(pattern)
words.extend(w)
documents.append((w, intent['tag']))
if intent['tag'] not in classes:
classes.append(intent['tag'])
words = [stemmer.stem(w.lower()) for w in words if w not in ignore_words]
words = sorted(list(set(words)))
classes = sorted(list(set(classes)))
training = []
output_empty = [0] * len(classes)
for doc in documents:
bag = []
pattern_words = doc[0]
pattern_words = [stemmer.stem(word.lower()) for word in pattern_words]
for w in words:
bag.append(1) if w in pattern_words else bag.append(0)
output_row = list(output_empty)
output_row[classes.index(doc[1])] = 1
training.append([bag, output_row])
random.shuffle(training)
training = np.array(training)
train_x = list(training[:, 0])
train_y = list(training[:, 1])
# define our model
model = Sequential()
model.add(Dense(128, input_shape=(len(train_x[0]),), activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(len(train_y[0]), activation='softmax'))
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
try:
# instead training the model every time we can save the model and can be used
# model.fit(np.array(train_x), np.array(train_y), epochs=200, batch_size=5, verbose=0)
# model._make_predict_function()
# joblib.dump(model, 'my_model.pkl')
# joblib.dump((words, ignore_words, classes, documents), 'my_data.pkl')
tf_config = os.environ.get('TF_CONFIG')
sess = tf.compat.v1.Session(config=tf_config)
graph = tf.compat.v1.get_default_graph()
with open(f'my_model.pkl', 'rb') as f:
set_session(sess)
model = joblib.load('my_model.pkl')
model._make_predict_function()
words, ignore_words, classes, documents = joblib.load('my_data.pkl')
except:
# in case we don't have the trained model we first train and save the model
model.fit(np.array(train_x), np.array(train_y), epochs=200, batch_size=5, verbose=0)
graph = tf.get_default_graph()
joblib.dump(model, 'my_model.pkl')
joblib.dump((words, ignore_words, classes, documents), 'my_data.pkl')
def clean_up_sentence(sentence):
sentence_words = nltk.word_tokenize(sentence)
sentence_words = [stemmer.stem(word.lower()) for word in sentence_words]
return sentence_words
def bow(sentence, words, show_details=True):
sentence_words = clean_up_sentence(sentence)
bag = [0] * len(words)
for s in sentence_words:
for i, w in enumerate(words):
if w == s:
bag[i] = 1
# if show_details:
# print("found in bag: %s" % w)
return np.array(bag)
def get_results(sentence):
ERROR_THRESHOLD = 0.9
try:
input_data = pd.DataFrame([bow(sentence, words)], dtype=float, index=['input'])
# print(input_data)
global sess
global graph
with graph.as_default():
set_session(sess)
results = model.predict([input_data])[0]
# print(results)
results = [[i, r] for i, r in enumerate(results) if r > ERROR_THRESHOLD]
# print(results)
results.sort(key=lambda x: x[1], reverse=True)
return_list = []
for r in results:
return_list.append((classes[r[0]], str(r[1])))
if len(return_list[0]) == 0:
return [('noanswer', 0.870264)]
return return_list
except IndexError:
return [('noanswer', 0.870264)]
context = 0
def get_response(x, inp):
global context
for i in range(len(intents['intents'])):
if intents['intents'][i]["tag"] == x and i < 9:
return random.choice(intents['intents'][i]["responses"])
elif intents['intents'][i]["tag"] == x and i == 9:
context = 1
return random.choice(intents['intents'][i]["responses"])
elif intents['intents'][i]["tag"] == x and i > 9:
details = extractor(inp)
# print(details)
return get_database_details(x, details)
def response(messageText, UserId=None):
global context
if context == 0:
question = get_results(messageText)[0][0]
return get_response(question, messageText)
else:
insert_details(messageText, UserId)
context = 0
return "Your complain filed successfully."