This repository has been archived by the owner on Aug 22, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
default.cpp
258 lines (211 loc) · 8.14 KB
/
default.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
// default.cpp - written and placed in the public domain by Wei Dai
#include "pch.h"
#include "default.h"
#include "queue.h"
#include <time.h>
#include <memory>
NAMESPACE_BEGIN(CryptoPP)
static const unsigned int MASH_ITERATIONS = 200;
static const unsigned int SALTLENGTH = 8;
static const unsigned int BLOCKSIZE = Default_BlockCipher::Encryption::BLOCKSIZE;
static const unsigned int KEYLENGTH = Default_BlockCipher::Encryption::DEFAULT_KEYLENGTH;
// The purpose of this function Mash() is to take an arbitrary length input
// string and *deterministicly* produce an arbitrary length output string such
// that (1) it looks random, (2) no information about the input is
// deducible from it, and (3) it contains as much entropy as it can hold, or
// the amount of entropy in the input string, whichever is smaller.
static void Mash(const byte *in, size_t inLen, byte *out, size_t outLen, int iterations)
{
if (BytePrecision(outLen) > 2)
throw InvalidArgument("Mash: output legnth too large");
size_t bufSize = RoundUpToMultipleOf(outLen, (size_t)DefaultHashModule::DIGESTSIZE);
byte b[2];
SecByteBlock buf(bufSize);
SecByteBlock outBuf(bufSize);
DefaultHashModule hash;
unsigned int i;
for(i=0; i<outLen; i+=DefaultHashModule::DIGESTSIZE)
{
b[0] = (byte) (i >> 8);
b[1] = (byte) i;
hash.Update(b, 2);
hash.Update(in, inLen);
hash.Final(outBuf+i);
}
while (iterations-- > 1)
{
memcpy(buf, outBuf, bufSize);
for (i=0; i<bufSize; i+=DefaultHashModule::DIGESTSIZE)
{
b[0] = (byte) (i >> 8);
b[1] = (byte) i;
hash.Update(b, 2);
hash.Update(buf, bufSize);
hash.Final(outBuf+i);
}
}
memcpy(out, outBuf, outLen);
}
static void GenerateKeyIV(const byte *passphrase, size_t passphraseLength, const byte *salt, size_t saltLength, byte *key, byte *IV)
{
SecByteBlock temp(passphraseLength+saltLength);
memcpy(temp, passphrase, passphraseLength);
memcpy(temp+passphraseLength, salt, saltLength);
SecByteBlock keyIV(KEYLENGTH+BLOCKSIZE);
Mash(temp, passphraseLength + saltLength, keyIV, KEYLENGTH+BLOCKSIZE, MASH_ITERATIONS);
memcpy(key, keyIV, KEYLENGTH);
memcpy(IV, keyIV+KEYLENGTH, BLOCKSIZE);
}
// ********************************************************
DefaultEncryptor::DefaultEncryptor(const char *passphrase, BufferedTransformation *attachment)
: ProxyFilter(NULL, 0, 0, attachment), m_passphrase((const byte *)passphrase, strlen(passphrase))
{
}
DefaultEncryptor::DefaultEncryptor(const byte *passphrase, size_t passphraseLength, BufferedTransformation *attachment)
: ProxyFilter(NULL, 0, 0, attachment), m_passphrase(passphrase, passphraseLength)
{
}
void DefaultEncryptor::FirstPut(const byte *)
{
// VC60 workaround: __LINE__ expansion bug
CRYPTOPP_COMPILE_ASSERT_INSTANCE(SALTLENGTH <= DefaultHashModule::DIGESTSIZE, 1);
CRYPTOPP_COMPILE_ASSERT_INSTANCE(BLOCKSIZE <= DefaultHashModule::DIGESTSIZE, 2);
SecByteBlock salt(DefaultHashModule::DIGESTSIZE), keyCheck(DefaultHashModule::DIGESTSIZE);
DefaultHashModule hash;
// use hash(passphrase | time | clock) as salt
hash.Update(m_passphrase, m_passphrase.size());
time_t t=time(0);
hash.Update((byte *)&t, sizeof(t));
clock_t c=clock();
hash.Update((byte *)&c, sizeof(c));
hash.Final(salt);
// use hash(passphrase | salt) as key check
hash.Update(m_passphrase, m_passphrase.size());
hash.Update(salt, SALTLENGTH);
hash.Final(keyCheck);
AttachedTransformation()->Put(salt, SALTLENGTH);
// mash passphrase and salt together into key and IV
SecByteBlock key(KEYLENGTH);
SecByteBlock IV(BLOCKSIZE);
GenerateKeyIV(m_passphrase, m_passphrase.size(), salt, SALTLENGTH, key, IV);
m_cipher.SetKeyWithIV(key, key.size(), IV);
SetFilter(new StreamTransformationFilter(m_cipher));
m_filter->Put(keyCheck, BLOCKSIZE);
}
void DefaultEncryptor::LastPut(const byte *inString, size_t length)
{
m_filter->MessageEnd();
}
// ********************************************************
DefaultDecryptor::DefaultDecryptor(const char *p, BufferedTransformation *attachment, bool throwException)
: ProxyFilter(NULL, SALTLENGTH+BLOCKSIZE, 0, attachment)
, m_state(WAITING_FOR_KEYCHECK)
, m_passphrase((const byte *)p, strlen(p))
, m_throwException(throwException)
{
}
DefaultDecryptor::DefaultDecryptor(const byte *passphrase, size_t passphraseLength, BufferedTransformation *attachment, bool throwException)
: ProxyFilter(NULL, SALTLENGTH+BLOCKSIZE, 0, attachment)
, m_state(WAITING_FOR_KEYCHECK)
, m_passphrase(passphrase, passphraseLength)
, m_throwException(throwException)
{
}
void DefaultDecryptor::FirstPut(const byte *inString)
{
CheckKey(inString, inString+SALTLENGTH);
}
void DefaultDecryptor::LastPut(const byte *inString, size_t length)
{
if (m_filter.get() == NULL)
{
m_state = KEY_BAD;
if (m_throwException)
throw KeyBadErr();
}
else
{
m_filter->MessageEnd();
m_state = WAITING_FOR_KEYCHECK;
}
}
void DefaultDecryptor::CheckKey(const byte *salt, const byte *keyCheck)
{
SecByteBlock check(STDMAX((unsigned int)2*BLOCKSIZE, (unsigned int)DefaultHashModule::DIGESTSIZE));
DefaultHashModule hash;
hash.Update(m_passphrase, m_passphrase.size());
hash.Update(salt, SALTLENGTH);
hash.Final(check);
SecByteBlock key(KEYLENGTH);
SecByteBlock IV(BLOCKSIZE);
GenerateKeyIV(m_passphrase, m_passphrase.size(), salt, SALTLENGTH, key, IV);
m_cipher.SetKeyWithIV(key, key.size(), IV);
std::auto_ptr<StreamTransformationFilter> decryptor(new StreamTransformationFilter(m_cipher));
decryptor->Put(keyCheck, BLOCKSIZE);
decryptor->ForceNextPut();
decryptor->Get(check+BLOCKSIZE, BLOCKSIZE);
SetFilter(decryptor.release());
if (!VerifyBufsEqual(check, check+BLOCKSIZE, BLOCKSIZE))
{
m_state = KEY_BAD;
if (m_throwException)
throw KeyBadErr();
}
else
m_state = KEY_GOOD;
}
// ********************************************************
static DefaultMAC * NewDefaultEncryptorMAC(const byte *passphrase, size_t passphraseLength)
{
size_t macKeyLength = DefaultMAC::StaticGetValidKeyLength(16);
SecByteBlock macKey(macKeyLength);
// since the MAC is encrypted there is no reason to mash the passphrase for many iterations
Mash(passphrase, passphraseLength, macKey, macKeyLength, 1);
return new DefaultMAC(macKey, macKeyLength);
}
DefaultEncryptorWithMAC::DefaultEncryptorWithMAC(const char *passphrase, BufferedTransformation *attachment)
: ProxyFilter(NULL, 0, 0, attachment)
, m_mac(NewDefaultEncryptorMAC((const byte *)passphrase, strlen(passphrase)))
{
SetFilter(new HashFilter(*m_mac, new DefaultEncryptor(passphrase), true));
}
DefaultEncryptorWithMAC::DefaultEncryptorWithMAC(const byte *passphrase, size_t passphraseLength, BufferedTransformation *attachment)
: ProxyFilter(NULL, 0, 0, attachment)
, m_mac(NewDefaultEncryptorMAC(passphrase, passphraseLength))
{
SetFilter(new HashFilter(*m_mac, new DefaultEncryptor(passphrase, passphraseLength), true));
}
void DefaultEncryptorWithMAC::LastPut(const byte *inString, size_t length)
{
m_filter->MessageEnd();
}
// ********************************************************
DefaultDecryptorWithMAC::DefaultDecryptorWithMAC(const char *passphrase, BufferedTransformation *attachment, bool throwException)
: ProxyFilter(NULL, 0, 0, attachment)
, m_mac(NewDefaultEncryptorMAC((const byte *)passphrase, strlen(passphrase)))
, m_throwException(throwException)
{
SetFilter(new DefaultDecryptor(passphrase, m_hashVerifier=new HashVerifier(*m_mac, NULL, HashVerifier::PUT_MESSAGE), throwException));
}
DefaultDecryptorWithMAC::DefaultDecryptorWithMAC(const byte *passphrase, size_t passphraseLength, BufferedTransformation *attachment, bool throwException)
: ProxyFilter(NULL, 0, 0, attachment)
, m_mac(NewDefaultEncryptorMAC(passphrase, passphraseLength))
, m_throwException(throwException)
{
SetFilter(new DefaultDecryptor(passphrase, passphraseLength, m_hashVerifier=new HashVerifier(*m_mac, NULL, HashVerifier::PUT_MESSAGE), throwException));
}
DefaultDecryptor::State DefaultDecryptorWithMAC::CurrentState() const
{
return static_cast<const DefaultDecryptor *>(m_filter.get())->CurrentState();
}
bool DefaultDecryptorWithMAC::CheckLastMAC() const
{
return m_hashVerifier->GetLastResult();
}
void DefaultDecryptorWithMAC::LastPut(const byte *inString, size_t length)
{
m_filter->MessageEnd();
if (m_throwException && !CheckLastMAC())
throw MACBadErr();
}
NAMESPACE_END