-
Notifications
You must be signed in to change notification settings - Fork 5
/
reading_utils.py
143 lines (121 loc) · 5.3 KB
/
reading_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# Lint as: python3
# pylint: disable=g-bad-file-header
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Utilities for reading open sourced Learning Complex Physics data."""
import functools
import numpy as np
import tensorflow.compat.v1 as tf
# Create a description of the features.
_FEATURE_DESCRIPTION = {
'position': tf.io.VarLenFeature(tf.string),
}
_FEATURE_DESCRIPTION_WITH_GLOBAL_CONTEXT = _FEATURE_DESCRIPTION.copy()
_FEATURE_DESCRIPTION_WITH_GLOBAL_CONTEXT['step_context'] = tf.io.VarLenFeature(
tf.string)
_FEATURE_DTYPES = {
'position': {
'in': np.float32,
'out': tf.float32
},
'step_context': {
'in': np.float32,
'out': tf.float32
}
}
_CONTEXT_FEATURES = {
'key': tf.io.FixedLenFeature([], tf.int64, default_value=0),
'particle_type': tf.io.VarLenFeature(tf.string)
}
def convert_to_tensor(x, encoded_dtype):
if len(x) == 1:
out = np.frombuffer(x[0].numpy(), dtype=encoded_dtype)
else:
out = []
for el in x:
out.append(np.frombuffer(el.numpy(), dtype=encoded_dtype))
out = tf.convert_to_tensor(np.array(out))
return out
def parse_serialized_simulation_example(example_proto, metadata):
"""Parses a serialized simulation tf.SequenceExample.
Args:
example_proto: A string encoding of the tf.SequenceExample proto.
metadata: A dict of metadata for the dataset.
Returns:
context: A dict, with features that do not vary over the trajectory.
parsed_features: A dict of tf.Tensors representing the parsed examples
across time, where axis zero is the time axis.
"""
if 'context_mean' in metadata:
feature_description = _FEATURE_DESCRIPTION_WITH_GLOBAL_CONTEXT
else:
feature_description = _FEATURE_DESCRIPTION
context, parsed_features = tf.io.parse_single_sequence_example(
example_proto,
context_features=_CONTEXT_FEATURES,
sequence_features=feature_description)
for feature_key, item in parsed_features.items():
convert_fn = functools.partial(
convert_to_tensor, encoded_dtype=_FEATURE_DTYPES[feature_key]['in'])
parsed_features[feature_key] = tf.py_function(
convert_fn, inp=[item.values], Tout=_FEATURE_DTYPES[feature_key]['out'])
# There is an extra frame at the beginning so we can calculate pos change
# for all frames used in the paper.
position_shape = [metadata['sequence_length'] + 1, -1, metadata['dim']]
# Reshape positions to correct dim:
parsed_features['position'] = tf.reshape(parsed_features['position'],
position_shape)
# Set correct shapes of the remaining tensors.
sequence_length = metadata['sequence_length'] + 1
if 'context_mean' in metadata:
context_feat_len = len(metadata['context_mean'])
parsed_features['step_context'] = tf.reshape(
parsed_features['step_context'],
[sequence_length, context_feat_len])
# Decode particle type explicitly
context['particle_type'] = tf.py_function(
functools.partial(convert_fn, encoded_dtype=np.int64),
inp=[context['particle_type'].values],
Tout=[tf.int64])
context['particle_type'] = tf.reshape(context['particle_type'], [-1])
print("context: ", context)
print("features: ", parsed_features)
return context, parsed_features
def split_trajectory(context, features, window_length=7):
"""Splits trajectory into sliding windows."""
# Our strategy is to make sure all the leading dimensions are the same size,
# then we can use from_tensor_slices.
trajectory_length = features['position'].get_shape().as_list()[0]
# We then stack window_length position changes so the final
# trajectory length will be - window_length +1 (the 1 to make sure we get
# the last split).
input_trajectory_length = trajectory_length - window_length + 1
model_input_features = {}
# Prepare the context features per step.
model_input_features['particle_type'] = tf.tile(
tf.expand_dims(context['particle_type'], axis=0),
[input_trajectory_length, 1])
if 'step_context' in features:
global_stack = []
for idx in range(input_trajectory_length):
global_stack.append(
features['step_context'][idx:idx + window_length])
model_input_features['step_context'] = tf.stack(global_stack)
pos_stack = []
for idx in range(input_trajectory_length):
pos_stack.append(features['position'][idx:idx + window_length])
# Get the corresponding positions
model_input_features['position'] = tf.stack(pos_stack)
return tf.data.Dataset.from_tensor_slices(model_input_features)