-
Notifications
You must be signed in to change notification settings - Fork 2
/
train_unsupervised.py
267 lines (232 loc) · 11.5 KB
/
train_unsupervised.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import time
import logging
import os
import numpy as np
import h5py
import torch
import torch.nn.functional as F
from torch.cuda.amp import GradScaler, autocast
from torch.utils.tensorboard import SummaryWriter
from losses import SupConLoss, MMContrastiveLoss, CLIPLoss, ConVIRT, LossV0
from sklearn.manifold import TSNE
from tqdm import tqdm
from utils import save_config_file, save_checkpoint, EarlyStopping
from lightly.loss import ntx_ent_loss
class UnsupervisedLearner(object):
def __init__(self, **kwargs):
self.args = kwargs['args']
self.model = kwargs['model'].to(self.args.device)
self.optimizer = kwargs['optimizer']
self.scheduler = kwargs['scheduler']
if self.args.experiment == '':
self.writer = SummaryWriter()
else:
self.writer = SummaryWriter(log_dir='runs/' + self.args.experiment)
logger_fmt = '[%(asctime)s] : [%(levelname)s : %(name)s] :: %(message)s'
logging.basicConfig(filename=os.path.join(self.writer.log_dir, 'training.log'),
level=logging.DEBUG, format=logger_fmt)
logging.getLogger('PIL').setLevel(logging.WARNING)
logging.getLogger('matplotlib').setLevel(logging.WARNING)
if self.args.mmcontr:
self.mmcontr_loss= MMContrastiveLoss(
margin=self.args.margin,
measure=self.args.measure,
max_violation=self.args.max_violation
).to(self.args.device)
if self.args.supcontr:
self.supcontr_loss = SupConLoss(temperature=self.args.temperature).to(self.args.device)
if self.args.simclr:
self.simclr_loss = ntx_ent_loss.NTXentLoss(self.args.temperature, self.args.moco_size).to(self.args.device)
if self.args.cliploss:
self.clip_loss = CLIPLoss(self.args.temperature).to(self.args.device)
if self.args.memeloss:
self.meme_mmloss = MMContrastiveLoss(
margin=self.args.margin,
measure=self.args.measure,
max_violation=self.args.max_violation
).to(self.args.device)
self.meme_floss = ntx_ent_loss.NTXentLoss(self.args.temperature, self.args.moco_size).to(self.args.device)
if self.args.convirt:
self.convirt_loss = ConVIRT(self.args.temperature).to(self.args.device)
if self.args.lossv0:
self.lossv0_loss = LossV0(self.args.temperature).to(self.args.device)
def compute_loss(self, out, step):
loss = 0.0
if self.args.simclr:
simloss = self.simclr_loss(out['image1'], out['image2'])
loss += simloss
self.writer.add_scalar('Unsupervised/SimCLR', simloss.item(), step)
if self.args.supcontr:
t = torch.cat((out['image1'].unsqueeze(1), out['image2'].unsqueeze(1)), 1)
supsimclrloss = self.supcontr_loss(t, out['label'])
loss += supsimclrloss
self.writer.add_scalar('Unsupervised/SupContrLoss', supsimclrloss.item(), step)
if self.args.mmcontr:
immloss, tmmloss = self.mmcontr_loss(out['image'], out['text'])
loss += immloss + tmmloss
self.writer.add_scalar('Unsupervised/ImageMMContrLoss', immloss.item(), step)
self.writer.add_scalar('Unsupervised/TextMMContrLoss', tmmloss.item(), step)
if self.args.cliploss:
cliploss = self.clip_loss(out['image'], out['text'])
loss += cliploss
self.writer.add_scalar('Unsupervised/CLIPLoss', cliploss.item(), step)
if self.args.memeloss:
f2i, i2f = self.meme_mmloss(out['fusion'], out['image'])
fusion2i = f2i * 0.7 + 0.3 * i2f
f2t, t2f = self.meme_mmloss(out['fusion'], out['text'])
fusion2t = f2t * 0.7 + 0.3 * t2f
f2f = self.meme_floss(out['fusion1'], out['fusion2'])
loss += self.args.w_f2i * fusion2i + self.args.w_f2t * fusion2t + self.args.w_f2f * f2f
self.writer.add_scalar('Unsupervised/Fusion2ImageLoss', fusion2i.item(), step)
self.writer.add_scalar('Unsupervised/Fusion2TextLoss', fusion2t.item(), step)
self.writer.add_scalar('Unsupervised/Fusion2FusionLoss', f2f.item(), step)
if self.args.convirt:
i2t, t2i = self.convirt_loss(out['image'], out['text'])
loss += i2t + t2i
self.writer.add_scalar('Unsupervised/ConVIRTImage2TextLoss', i2t.item(), step)
self.writer.add_scalar('Unsupervised/ConVIRTText2ImageLoss', t2i.item(), step)
if self.args.lossv0:
lossv0 = self.lossv0_loss(out['image'], out['text'])
loss += lossv0
self.writer.add_scalar('Unsupervised/LossV0Loss', lossv0.item(), step)
self.writer.add_scalar('Unsupervised/Loss', loss, step)
return loss
def get_batch(self, it):
if self.args.n_views == 2:
(image1, image2), text, mask, label = next(it)
batch = {
'image1': image1,
'image2': image2,
'text': text,
'mask': mask,
'label': label
}
else:
image, text, mask, label = next(it)
batch = {
'image1': image,
'image2': None,
'text': text,
'mask': mask,
'label': label
}
batch = {k:v.to(self.args.device) if v is not None else None for k, v in batch.items()}
return batch
def save_embed(self, train_loader):
self.model.eval()
save_config_file(self.writer.log_dir, self.args)
logging.info(f"Start Embedding Visualization.")
logging.info(f"Using args: {self.args}")
trainiterator = iter(train_loader)
image_embeddings = []
text_embeddings = []
all_labels = []
with torch.no_grad():
for loader_idx in range(len(train_loader)):
batch = self.get_batch(trainiterator)
im = self.model.encode_image(batch['image'])
txt = self.model.encode_text(batch['text'])
image_embeddings.append(im.cpu().numpy())
text_embeddings.append(txt.cpu().numpy())
all_labels.append(batch['label'].cpu().numpy())
print("Runs")
classes= {1: 'Hateful', 0: 'Non-hateful'}
image_embeddings = np.concatenate(image_embeddings, axis=0)
text_embeddings = np.concatenate(text_embeddings, axis=0)
all_labels = np.concatenate(all_labels)
class_labels = [classes[i.item()] for i in all_labels]
print("Image Embeddings:", image_embeddings.shape)
print("Text Embeddings:", text_embeddings.shape)
print("Labels:", all_labels.shape)
h_file = h5py.File(os.path.join(self.writer.log_dir,'embeds.h5'), 'w')
h_file.create_dataset('image_embeds', data=image_embeddings)
h_file.create_dataset('text_embeds', data=text_embeddings)
h_file.create_dataset('labels_embeds', data=all_labels)
h_file.close()
green = all_labels == 0
red = all_labels == 1
for perplexity in [5, 25, 50, 100]:
t1 = time.time()
tsne = TSNE(2, perplexity, n_iter=2500, n_jobs=12)
Xi_embed = tsne.fit_transform(image_embeddings)
t2 = time.time()
logging.info(f"TSNE {perplexity} took {t2-t1}s on image_embeddings")
t1 = time.time()
tsne = TSNE(2, perplexity, n_iter=2500, n_jobs=12)
Xt_embed = tsne.fit_transform(text_embeddings)
t2 = time.time()
logging.info(f"TSNE {perplexity} took {t2-t1}s on text_embeddings")
h_file = h5py.File(os.path.join(self.writer.log_dir,'embeds-tsne-{}.h5'.format(perplexity)), 'w')
h_file.create_dataset('image_embeds', data=Xi_embed)
h_file.create_dataset('text_embeds', data=Xt_embed)
h_file.create_dataset('labels_embeds', data=all_labels)
h_file.close()
plt.figure(figsize=(15, 8))
plt.title(f"TSNE {perplexity} Text Embeddings")
plt.scatter(Xt_embed[green, 0], Xt_embed[green, 1], c='g')
plt.scatter(Xt_embed[red, 0], Xt_embed[red, 1], c='r')
plt.tight_layout()
plt.savefig(os.path.join(self.writer.log_dir,'embeds-tsne-text-{}.png'.format(perplexity)))
plt.cla()
plt.figure(figsize=(15, 8))
plt.title(f"TSNE {perplexity} Image Embeddings")
plt.scatter(Xi_embed[green, 0], Xi_embed[green, 1], c='g')
plt.scatter(Xi_embed[red, 0], Xi_embed[red, 1], c='r')
plt.tight_layout()
plt.savefig(os.path.join(self.writer.log_dir,'embeds-tsne-image-{}.png'.format(perplexity)))
plt.cla()
logging.info(f"TSNE {perplexity} plot saved")
logging.info("Complete")
def train(self, train_loader):
self.model.train()
scaler = GradScaler(enabled=self.args.fp16_precision)
save_config_file(self.writer.log_dir, self.args)
n_iter = 0
logging.info(f"Start SimCLR training for {self.args.epochs} epochs.")
logging.info(f"Using args: {self.args}")
earlyStopper = EarlyStopping(patience=10)
for epoch_counter in tqdm(range(self.args.epochs), disable=self.args.no_tqdm):
trainiterator = iter(train_loader)
for loader_idx in range(len(train_loader)):
batch = self.get_batch(trainiterator)
if self.args.dryrun:
if loader_idx == 4:
print("Dry Run in Unsupervised train complete, exiting")
break
with autocast(enabled=self.args.fp16_precision):
out = self.model(batch)
loss = self.compute_loss(out, n_iter)
self.optimizer.zero_grad()
scaler.scale(loss).backward()
scaler.step(self.optimizer)
scaler.update()
n_iter += 1
earlyStopper(loss.item())
logging.debug("Epoch: {}\tLoss: {}".format(epoch_counter, loss.item()))
if self.args.dryrun:
break
if epoch_counter >= 10:
self.scheduler.step()
if epoch_counter % 10 == 0:
checkpoint_name = 'checkpoint_{:04d}.pth.tar'.format(epoch_counter)
save_checkpoint({
'epoch': self.args.epochs,
'arch': self.args.arch,
'state_dict': self.model.state_dict(),
'optimizer': self.optimizer.state_dict(),
}, is_best=False, filename=os.path.join(self.writer.log_dir, checkpoint_name))
logging.info(f"Checkpoint created at {checkpoint_name}")
if earlyStopper.early_stop:
logging.info("Early Stopping, Loss didn't decrease for several epochs")
break
logging.info("Training has finished.")
checkpoint_name = 'last_checkpoint-{}.pth.tar'.format(self.model.name)
filename = os.path.join(self.writer.log_dir, checkpoint_name)
save_checkpoint({
'epoch': self.args.epochs,
'arch': self.args.arch,
'state_dict': self.model.state_dict(),
'optimizer': self.optimizer.state_dict(),
}, is_best=False, filename=filename)
logging.info(f"Model checkpoint and metadata has been saved at {self.writer.log_dir}.")
logging.info("Completed self-supervised training.")