-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_SRResnet.py
138 lines (93 loc) · 4.36 KB
/
train_SRResnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import torch
import torch.nn as nn
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from torch.autograd import Variable
from torchvision.transforms import ToPILImage, ToTensor
from models import SRResNet
from datasets import TrainDataset, ValidDataset
from utils import calculate_psnr_y_channel, calculate_ssim_y_channel
from tqdm import tqdm
criterion = nn.MSELoss()
class SRResnet_trainer():
def __init__(self, model, optimizer, device):
self.device = device
self.model = model.to(self.device)
self.optimizer = optimizer.to(self.device)
def train(self, trainloader, trainloader_v2, validloader, start_epoch, end_epoch):
for epoch in range(start_epoch, end_epoch+1):
self.model.train()
loss_epoch = 0.
for batch, data in tqdm(enumerate(trainloader), leave=False):
lr = Variable(data['lr']).to(self.device)
hr = Variable(data['hr']).to(self.device)
sr = self.model(lr)
loss = criterion(sr, hr)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
loss_epoch += loss.item()
loss_epoch /= (batch+1)
print(f'\nEpoch {epoch} -- Loss {loss_epoch}\n')
if epoch%10==0:
psnr_valid, ssim_valid = self.valid(validloader)
psnr_train, ssim_train = self.valid(trainloader_v2)
print(f'\nEpoch {epoch} -- PSNR train {psnr_train} -- PSNR valid {psnr_valid}\n')
print(f'\nEpoch {epoch} -- SSIM train {ssim_train} -- SSIM valid {ssim_valid}\n')
self.saving(epoch)
def valid(self, loader):
self.model.eval()
avg_psnr = 0.
avg_ssim = 0.
for batch, data in tqdm(enumerate(loader), leave=False):
lr, hr= data['lr'].to(self.device), data['hr'].to(self.device)
assert lr.shape[0] == 1
with torch.no_grad():
sr = self.model(lr)
sr_img = ToPILImage()(sr.cpu().squeeze())
hr_img = ToPILImage()(hr.cpu().squeeze())
psnr = calculate_psnr_y_channel(sr_img, hr_img)
ssim = calculate_ssim_y_channel(sr_img, hr_img)
avg_psnr += psnr
avg_ssim += ssim
avg_psnr /= (batch+1)
avg_ssim /= (batch+1)
return avg_psnr, avg_ssim
def saving(self, epoch):
filename = f'./experiments/srresnet_{epoch}.pt'
torch.save({
'model_state_dict':self.model.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict()
}, filename
)
def load(self, epoch):
filename = f'./experiments/srresnet_{epoch}.pt'
try:
checkpoint = torch.load(filename)
self.model.load_state_dict(checkpoint['model_state_dict'])
self.optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
print(f'Load model successfully')
except:
print(f'Load model fail')
if __name__ == "__main__":
## Config
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
crop_size=88
upscale_factor=4
batch_size=64
nblocks = 3
lr = 0.001
betas = (0.99, 0.999)
TRAIN_PATH = './compress_data/voc_train.pkl'
VALID_PATH = './compress_data/voc_valid.pkl'
## Set up
train_dataset = TrainDataset(TRAIN_PATH, crop_size=crop_size, upscale_factor=upscale_factor)
valid_dataset = ValidDataset(VALID_PATH, crop_size=crop_size, upscale_factor=upscale_factor)
trainloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=2)
trainloader_v2 = DataLoader(train_dataset, batch_size=1, shuffle=True, num_workers=2) # need to calculate score metrics
validloader = DataLoader(valid_dataset, batch_size=1, shuffle=False, num_workers=2)
model = SRResNet(scale_factor=upscale_factor, kernel_size=9, n_channels=64)
optimizer = torch.optim.Adam(params=model.parameters(), lr=lr, betas=betas)
## Training
trainer = SRResnet_trainer(model, optimizer, device)
trainer.train(trainloader, trainloader_v2, validloader, 1, 100)