forked from MVIG-SJTU/AlphaPose
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run2.sh
executable file
·105 lines (89 loc) · 3.21 KB
/
run2.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
#!/bin/bash
TEMP=`getopt -o gvliocm:fcds --long gpu:,batch:,video:,list:,indir:,outdir:,format:,mode:,dataset:,vis,sep -n 'wrong args...' -- "$@"`
if [ $? != 0 ] ; then
echo "Terminating..."
exit 1
fi
eval set -- "${TEMP}"
GPU_ID=0
BATCH_SIZE=2
INPUT_PATH="/"
OUTPUT_PATH="examples/results/"
VIDEO_FILE=""
LIST_FILE=""
WORK_PATH=$(dirname $(readlink -f $0))
MODE="normal"
VIS=false
SEP=false
DATASET="MPII"
FORMAT="default"
while true ; do
case "$1" in
-g|--gpu) GPU_ID="$2" ; shift 2;;
-b|--batch) BATCH_SIZE="$2" ; shift 2;;
-v|--video) VIDEO_FILE=${WORK_PATH}/$2 ; shift 2;;
-l|--list) LIST_FILE=${WORK_PATH}/$2 ; shift 2;;
-i|--indir) INPUT_PATH=${WORK_PATH}/$2 ; shift 2;;
-o|--outdir) OUTPUT_PATH=${WORK_PATH}/$2 ; shift 2;;
-m|--mode) MODE=$2 ; shift 2;;
-r|--vis) VIS=true ; shift ;;
-q|--sep) SEP=true ; shift ;;
-d|--dataset) DATASET=$2 ; shift 2;;
-f|--format) FORMAT=$2 ; shift 2;;
--) shift ; break ;;
*) echo "Internal error!" ; exit 1 ;;
esac
done
# Get number of gpu numbers
IFS=',' read -ra ARRAY <<< "$GPU_ID"
GPU_NUM=${#ARRAY[@]}
echo ${#VIDEO_FILE}
if [ -n "$VIDEO_FILE" ]; then
echo "convert video to images..."
INPUT_PATH=${WORK_PATH}/video-tmp
if ! [ -e "$INPUT_PATH" ]; then
mkdir $INPUT_PATH
fi
ffmpeg -hide_banner -nostats -loglevel 0 -i ${VIDEO_FILE} -r 10 -f image2 ${INPUT_PATH}"/%05d.jpg"
fi
# echo $INPUT_PATH
# echo $OUTPUT_PATH
# echo $LIST_FILE
# echo $VIDEO_FILE
echo 'generating bbox from Faster RCNN...'
cd ${WORK_PATH}"/human-detection/tools"
CUDA_VISIBLE_DEVICES=${GPU_ID} python demo-alpha-pose.py --inputlist=${LIST_FILE} --inputpath=${INPUT_PATH} --outputpath=${OUTPUT_PATH} --mode=${MODE}
# echo $INPUT_PATH
# echo $OUTPUT_PATH
# echo $LIST_FILE
# echo $VIDEO_FILE
#echo 'pose estimation with RMPE...'
#cd ${WORK_PATH}"/predict"
#if [ "$MODE" = "accurate" ]; then
# CUDA_VISIBLE_DEVICES=${GPU_ID} /home/keze/torch/install/bin/th main-alpha-pose-4crop.lua predict ${INPUT_PATH} ${OUTPUT_PATH} ${GPU_NUM} ${BATCH_SIZE} ${DATASET}
#else
# CUDA_VISIBLE_DEVICES=${GPU_ID} /home/keze/torch/install/bin/th main-alpha-pose.lua predict ${INPUT_PATH} ${OUTPUT_PATH} ${GPU_NUM} ${BATCH_SIZE} ${DATASET}
#fi
#cd ${WORK_PATH}"/predict/json"
#if [ "$DATASET" = "COCO" ]; then
# python parametric-pose-nms-COCO.py --outputpath ${OUTPUT_PATH} --sep ${SEP} --format ${FORMAT}
#else
# python parametric-pose-nms-MPII.py --outputpath ${OUTPUT_PATH} --sep ${SEP} --format ${FORMAT}
#fi
#if $VIS; then
# echo 'visualization...'
# if ! [ -e ${OUTPUT_PATH}"/RENDER" ]; then
# mkdir ${OUTPUT_PATH}"/RENDER"
# fi
# python json-video.py --outputpath ${OUTPUT_PATH} --inputpath ${INPUT_PATH}
# if [ -n "$VIDEO_FILE" ]; then
# echo 'rendering video...'
# ffmpeg -r 25 -i ${OUTPUT_PATH}"/RENDER/%05d.jpg" -vcodec libx264 -y -vf "scale=trunc(iw/2)*2:trunc(ih/2)*2" ${OUTPUT_PATH}"/result_MS.mp4"
# fi
#fi
# delete generated video frames
cd ${WORK_PATH}
if [ -n "$VIDEO_FILE" ]; then
INPUT_PATH=${WORK_PATH}/video-tmp
rm -rf $INPUT_PATH
fi