-
Notifications
You must be signed in to change notification settings - Fork 48
/
train.py
390 lines (326 loc) · 19.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import os
import torch
from random import randint
from utils.loss_utils import l1_loss, ssim, compute_scale_and_shift, ScaleAndShiftInvariantLoss
from utils.general_utils import vis_depth, read_propagted_depth
from gaussian_renderer import render, network_gui
from utils.graphics_utils import surface_normal_from_depth, img_warping, depth_propagation, check_geometric_consistency, generate_edge_mask
import sys
from scene import Scene, GaussianModel
from utils.general_utils import safe_state, load_pairs_relation
import uuid
from tqdm import tqdm
from utils.image_utils import psnr
from argparse import ArgumentParser, Namespace
from arguments import ModelParams, PipelineParams, OptimizationParams
import imageio
import numpy as np
import torchvision
import cv2
try:
from torch.utils.tensorboard import SummaryWriter
TENSORBOARD_FOUND = True
except ImportError:
TENSORBOARD_FOUND = False
def training(dataset, opt, pipe, testing_iterations, saving_iterations, checkpoint_iterations, checkpoint, debug_from):
first_iter = 0
tb_writer = prepare_output_and_logger(dataset)
gaussians = GaussianModel(dataset.sh_degree)
scene = Scene(dataset, gaussians)
#read the overlapping txt
if opt.dataset == '360' and opt.depth_loss:
pairs = load_pairs_relation(opt.pair_path)
gaussians.training_setup(opt)
if checkpoint:
(model_params, first_iter) = torch.load(checkpoint)
gaussians.restore(model_params, opt)
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)
viewpoint_stack = scene.getTrainCameras().copy()
ema_loss_for_log = 0.0
progress_bar = tqdm(range(first_iter, opt.iterations), desc="Training progress")
first_iter += 1
# depth_loss_fn = ScaleAndShiftInvariantLoss(alpha=0.1, scales=1)
propagated_iteration_begin = opt.propagated_iteration_begin
propagated_iteration_after = opt.propagated_iteration_after
after_propagated = False
propagation_dict = {}
for i in range(0, len(viewpoint_stack), 1):
propagation_dict[viewpoint_stack[i].image_name] = False
for iteration in range(first_iter, opt.iterations + 1):
if network_gui.conn == None:
network_gui.try_connect()
while network_gui.conn != None:
try:
net_image_bytes = None
custom_cam, do_training, pipe.convert_SHs_python, pipe.compute_cov3D_python, keep_alive, scaling_modifer = network_gui.receive()
if custom_cam != None:
net_image = render(custom_cam, gaussians, pipe, background, scaling_modifer)["render"]
net_image_bytes = memoryview((torch.clamp(net_image, min=0, max=1.0) * 255).byte().permute(1, 2, 0).contiguous().cpu().numpy())
network_gui.send(net_image_bytes, dataset.source_path)
if do_training and ((iteration < int(opt.iterations)) or not keep_alive):
break
except Exception as e:
network_gui.conn = None
iter_start.record()
gaussians.update_learning_rate(iteration)
# Every 1000 its we increase the levels of SH up to a maximum degree
if iteration % 1000 == 0:
gaussians.oneupSHdegree()
# Pick a random Camera
# if not viewpoint_stack:
# viewpoint_stack = scene.getTrainCameras().copy()
randidx = randint(0, len(viewpoint_stack)-1)
# if iteration > propagated_iteration_begin and iteration < propagated_iteration_after and after_propagated:
# randidx = propagated_view_index
viewpoint_cam = viewpoint_stack[randidx]
if opt.depth_loss:
if opt.dataset == '360':
src_idxs = pairs[randidx]
else:
# intervals = [-6, -3, 3, 6]
if opt.dataset == 'waymo':
intervals = [-2, -1, 1, 2]
elif opt.dataset == 'scannet':
intervals = [-10, -5, 5, 10]
elif opt.dataset == 'free':
intervals = [-2, -1, 1, 2]
src_idxs = [randidx+itv for itv in intervals if ((itv + randidx > 0) and (itv + randidx < len(viewpoint_stack)))]
#propagate the gaussians first
with torch.no_grad():
if opt.depth_loss and iteration > propagated_iteration_begin and iteration < propagated_iteration_after and (iteration % opt.propagation_interval == 0 and not propagation_dict[viewpoint_cam.image_name]):
# if opt.depth_loss and iteration > propagated_iteration_begin and iteration < propagated_iteration_after and (iteration % opt.propagation_interval == 0):
propagation_dict[viewpoint_cam.image_name] = True
render_pkg = render(viewpoint_cam, gaussians, pipe, bg,
return_normal=opt.normal_loss, return_opacity=False, return_depth=opt.depth_loss or opt.depth2normal_loss)
projected_depth = render_pkg["render_depth"]
# get the opacity that less than the threshold, propagate depth in these region
if viewpoint_cam.sky_mask is not None:
sky_mask = viewpoint_cam.sky_mask.to(opacity_mask.device).to(torch.bool)
else:
sky_mask = None
torchvision.utils.save_image(viewpoint_cam.original_image, "cost/"+viewpoint_cam.image_name+"_"+str(iteration)+"gt.png")
# get the propagated depth
propagated_depth, normal = depth_propagation(viewpoint_cam, projected_depth, viewpoint_stack, src_idxs, opt.dataset, opt.patch_size)
# cache the propagated_depth
viewpoint_cam.depth = propagated_depth
#transform normal to camera coordinate
R_w2c = torch.tensor(viewpoint_cam.R.T).cuda().to(torch.float32)
# R_w2c[:, 1:] *= -1
normal = (R_w2c @ normal.view(-1, 3).permute(1, 0)).view(3, viewpoint_cam.image_height, viewpoint_cam.image_width)
valid_mask = propagated_depth != 300
# calculate the abs rel depth error of the propagated depth and rendered depth & render color error
render_depth = render_pkg['render_depth']
abs_rel_error = torch.abs(propagated_depth - render_depth) / propagated_depth
abs_rel_error_threshold = opt.depth_error_max_threshold - (opt.depth_error_max_threshold - opt.depth_error_min_threshold) * (iteration - propagated_iteration_begin) / (propagated_iteration_after - propagated_iteration_begin)
# color error
render_color = render_pkg['render']
torchvision.utils.save_image(render_color, "cost/"+viewpoint_cam.image_name+"_"+str(iteration)+"color.png")
color_error = torch.abs(render_color - viewpoint_cam.original_image)
color_error = color_error.mean(dim=0).squeeze()
error_mask = (abs_rel_error > abs_rel_error_threshold)
# # calculate the photometric consistency
ref_K = viewpoint_cam.K
#c2w
ref_pose = viewpoint_cam.world_view_transform.transpose(0, 1).inverse()
# calculate the geometric consistency
geometric_counts = None
for idx, src_idx in enumerate(src_idxs):
src_viewpoint = viewpoint_stack[src_idx]
#c2w
src_pose = src_viewpoint.world_view_transform.transpose(0, 1).inverse()
src_K = src_viewpoint.K
if src_viewpoint.depth is None:
src_render_pkg = render(src_viewpoint, gaussians, pipe, bg,
return_normal=opt.normal_loss, return_opacity=False, return_depth=opt.depth_loss or opt.depth2normal_loss)
src_projected_depth = src_render_pkg['render_depth']
#get the src_depth first
src_depth, src_normal = depth_propagation(src_viewpoint, src_projected_depth, viewpoint_stack, src_idxs, opt.dataset, opt.patch_size)
src_viewpoint.depth = src_depth
else:
src_depth = src_viewpoint.depth
mask, depth_reprojected, x2d_src, y2d_src, relative_depth_diff = check_geometric_consistency(propagated_depth.unsqueeze(0), ref_K.unsqueeze(0),
ref_pose.unsqueeze(0), src_depth.unsqueeze(0),
src_K.unsqueeze(0), src_pose.unsqueeze(0), thre1=2, thre2=0.01)
if geometric_counts is None:
geometric_counts = mask.to(torch.uint8)
else:
geometric_counts += mask.to(torch.uint8)
cost = geometric_counts.squeeze()
cost_mask = cost >= 2
normal[~(cost_mask.unsqueeze(0).repeat(3, 1, 1))] = -10
viewpoint_cam.normal = normal
propagated_mask = valid_mask & error_mask & cost_mask
if sky_mask is not None:
propagated_mask = propagated_mask & sky_mask
propagated_depth[~cost_mask] = 300
# propagated_mask = propagated_mask & edge_mask
propagated_depth[~propagated_mask] = 300
if propagated_mask.sum() > 100:
gaussians.densify_from_depth_propagation(viewpoint_cam, propagated_depth, propagated_mask.to(torch.bool), gt_image)
# Render
if (iteration - 1) == debug_from:
pipe.debug = True
bg = torch.rand((3), device="cuda") if opt.random_background else background
#render_pkg = render(viewpoint_cam, gaussians, pipe, bg, return_normal=args.normal_loss)
render_pkg = render(viewpoint_cam, gaussians, pipe, bg,
return_normal=opt.normal_loss, return_opacity=True, return_depth=opt.depth_loss or opt.depth2normal_loss)
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
# opacity mask
if iteration < opt.propagated_iteration_begin and opt.depth_loss:
opacity_mask = render_pkg['render_opacity'] > 0.999
opacity_mask = opacity_mask.unsqueeze(0).repeat(3, 1, 1)
else:
opacity_mask = render_pkg['render_opacity'] > 0.0
opacity_mask = opacity_mask.unsqueeze(0).repeat(3, 1, 1)
# Loss
gt_image = viewpoint_cam.original_image.cuda()
Ll1 = l1_loss(image[opacity_mask], gt_image[opacity_mask])
loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * (1.0 - ssim(image, gt_image, mask=opacity_mask))
# flatten loss
if opt.flatten_loss:
scales = gaussians.get_scaling
min_scale, _ = torch.min(scales, dim=1)
min_scale = torch.clamp(min_scale, 0, 30)
flatten_loss = torch.abs(min_scale).mean()
loss += opt.lambda_flatten * flatten_loss
# opacity loss
if opt.sparse_loss:
opacity = gaussians.get_opacity
opacity = opacity.clamp(1e-6, 1-1e-6)
log_opacity = opacity * torch.log(opacity)
log_one_minus_opacity = (1-opacity) * torch.log(1 - opacity)
sparse_loss = -1 * (log_opacity + log_one_minus_opacity)[visibility_filter].mean()
loss += opt.lambda_sparse * sparse_loss
if opt.normal_loss:
rendered_normal = render_pkg['render_normal']
if viewpoint_cam.normal is not None:
normal_gt = viewpoint_cam.normal.cuda()
if viewpoint_cam.sky_mask is not None:
filter_mask = viewpoint_cam.sky_mask.to(normal_gt.device).to(torch.bool)
normal_gt[~(filter_mask.unsqueeze(0).repeat(3, 1, 1))] = -10
filter_mask = (normal_gt != -10)[0, :, :].to(torch.bool)
l1_normal = torch.abs(rendered_normal - normal_gt).sum(dim=0)[filter_mask].mean()
cos_normal = (1. - torch.sum(rendered_normal * normal_gt, dim = 0))[filter_mask].mean()
loss += opt.lambda_l1_normal * l1_normal + opt.lambda_cos_normal * cos_normal
loss.backward()
iter_end.record()
with torch.no_grad():
# Progress bar
if not torch.isnan(loss):
ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log
if iteration % 10 == 0:
progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{7}f}"})
progress_bar.update(10)
if iteration == opt.iterations:
progress_bar.close()
# Log and save
training_report(tb_writer, iteration, Ll1, loss, l1_loss, iter_start.elapsed_time(iter_end), testing_iterations, scene, render, (pipe, background))
if (iteration in saving_iterations):
print("\n[ITER {}] Saving Gaussians".format(iteration))
scene.save(iteration)
# Densification
if iteration < opt.densify_until_iter:
# Keep track of max radii in image-space for pruning
gaussians.max_radii2D[visibility_filter] = torch.max(gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter)
if iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0:
size_threshold = 20 if iteration > opt.opacity_reset_interval else None
gaussians.densify_and_prune(opt.densify_grad_threshold, 0.005, scene.cameras_extent, size_threshold)
if iteration % opt.opacity_reset_interval == 0 or (dataset.white_background and iteration == opt.densify_from_iter):
gaussians.reset_opacity()
# Optimizer step
if iteration < opt.iterations:
gaussians.optimizer.step()
gaussians.optimizer.zero_grad(set_to_none = True)
if (iteration in checkpoint_iterations):
print("\n[ITER {}] Saving Checkpoint".format(iteration))
torch.save((gaussians.capture(), iteration), scene.model_path + "/chkpnt" + str(iteration) + ".pth")
def prepare_output_and_logger(args):
if not args.model_path:
if os.getenv('OAR_JOB_ID'):
unique_str=os.getenv('OAR_JOB_ID')
else:
unique_str = str(uuid.uuid4())
args.model_path = os.path.join("./output/", unique_str[0:10])
# Set up output folder
print("Output folder: {}".format(args.model_path))
os.makedirs(args.model_path, exist_ok = True)
with open(os.path.join(args.model_path, "cfg_args"), 'w') as cfg_log_f:
cfg_log_f.write(str(Namespace(**vars(args))))
# Create Tensorboard writer
tb_writer = None
if TENSORBOARD_FOUND:
tb_writer = SummaryWriter(args.model_path)
else:
print("Tensorboard not available: not logging progress")
return tb_writer
def training_report(tb_writer, iteration, Ll1, loss, l1_loss, elapsed, testing_iterations, scene : Scene, renderFunc, renderArgs):
if tb_writer:
tb_writer.add_scalar('train_loss_patches/l1_loss', Ll1.item(), iteration)
tb_writer.add_scalar('train_loss_patches/total_loss', loss.item(), iteration)
tb_writer.add_scalar('iter_time', elapsed, iteration)
# Report test and samples of training set
if iteration in testing_iterations:
torch.cuda.empty_cache()
validation_configs = ({'name': 'test', 'cameras' : scene.getTestCameras()},
{'name': 'train', 'cameras' : [scene.getTrainCameras()[idx % len(scene.getTrainCameras())] for idx in range(5, 30, 5)]})
for config in validation_configs:
if config['cameras'] and len(config['cameras']) > 0:
l1_test = 0.0
psnr_test = 0.0
for idx, viewpoint in enumerate(config['cameras']):
image = torch.clamp(renderFunc(viewpoint, scene.gaussians, *renderArgs)["render"], 0.0, 1.0)
gt_image = torch.clamp(viewpoint.original_image.to("cuda"), 0.0, 1.0)
if tb_writer and (idx < 5):
tb_writer.add_images(config['name'] + "_view_{}/render".format(viewpoint.image_name), image[None], global_step=iteration)
if iteration == testing_iterations[0]:
tb_writer.add_images(config['name'] + "_view_{}/ground_truth".format(viewpoint.image_name), gt_image[None], global_step=iteration)
l1_test += l1_loss(image, gt_image).mean().double()
psnr_test += psnr(image, gt_image).mean().double()
psnr_test /= len(config['cameras'])
l1_test /= len(config['cameras'])
print("\n[ITER {}] Evaluating {}: L1 {} PSNR {}".format(iteration, config['name'], l1_test, psnr_test))
if tb_writer:
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - l1_loss', l1_test, iteration)
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - psnr', psnr_test, iteration)
if tb_writer:
tb_writer.add_histogram("scene/opacity_histogram", scene.gaussians.get_opacity, iteration)
tb_writer.add_scalar('total_points', scene.gaussians.get_xyz.shape[0], iteration)
torch.cuda.empty_cache()
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Training script parameters")
lp = ModelParams(parser)
op = OptimizationParams(parser)
pp = PipelineParams(parser)
parser.add_argument('--ip', type=str, default="127.0.0.1")
parser.add_argument('--port', type=int, default=6009)
parser.add_argument('--debug_from', type=int, default=-1)
parser.add_argument('--detect_anomaly', action='store_true', default=False)
parser.add_argument("--test_iterations", nargs="+", type=int, default=[1, 2000, 7000, 20000, 50000])
parser.add_argument("--save_iterations", nargs="+", type=int, default=[1, 7000, 20000, 50000])
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[])
parser.add_argument("--start_checkpoint", type=str, default = None)
args = parser.parse_args(sys.argv[1:])
args.save_iterations.append(args.iterations)
print("Optimizing " + args.model_path)
# Initialize system state (RNG)
safe_state(args.quiet)
torch.autograd.set_detect_anomaly(args.detect_anomaly)
training(lp.extract(args), op.extract(args), pp.extract(args), args.test_iterations, args.save_iterations, args.checkpoint_iterations, args.start_checkpoint, args.debug_from)
# All done
print("\nTraining complete.")