-
Notifications
You must be signed in to change notification settings - Fork 2
/
train.py
executable file
·288 lines (245 loc) · 10.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
#! /usr/bin/env python
"""Train the book-category classifier."""
import tensorflow as tf
import numpy as np
import os
import time
import datetime
import re
import itertools
from tensorflow.contrib import learn
# Local things.
import gutenberg
from text_cnn import TextCNN
# Parameters
# ==================================================
# Data loading params
tf.flags.DEFINE_integer('subject_count', 10, 'The number of subjects to use.')
tf.flags.DEFINE_integer('book_limit', 20, 'The max number of books to load.')
tf.flags.DEFINE_float('dev_sample_percentage', .1, 'Percentage of the training data to use for validation')
# Model Hyperparameters
tf.flags.DEFINE_integer('embedding_dim', 128, 'Dimensionality of character embedding (default: 128)')
tf.flags.DEFINE_string('filter_sizes', '3,4,5', 'Comma-separated filter sizes (default: "3,4,5")')
tf.flags.DEFINE_integer('num_filters', 128, 'Number of filters per filter size (default: 128)')
tf.flags.DEFINE_float('dropout_keep_prob', 0.5, 'Dropout keep probability (default: 0.5)')
tf.flags.DEFINE_float('l2_reg_lambda', 0.0, 'L2 regularizaion lambda (default: 0.0)')
# Training parameters
tf.flags.DEFINE_integer('batch_size', 64, 'Batch Size (default: 64)')
tf.flags.DEFINE_integer('num_epochs', 200, 'Number of training epochs (default: 200)')
tf.flags.DEFINE_integer('evaluate_every', 100, 'Evaluate model on dev set after this many steps (default: 100)')
tf.flags.DEFINE_integer('checkpoint_every', 100, 'Save model after this many steps (default: 100)')
# Misc Parameters
tf.flags.DEFINE_boolean('allow_soft_placement', True, 'Allow device soft device placement')
tf.flags.DEFINE_boolean('log_device_placement', False, 'Log placement of ops on devices')
FLAGS = tf.flags.FLAGS
# Data Preparatopn
# ==================================================
def clean_str(string):
"""
Tokenization/string cleaning for all datasets except for SST.
Original taken from https://github.com/yoonkim/CNN_sentence/blob/master/process_data.py
"""
string = re.sub(r'[^A-Za-z0-9(),!?\'\`]', ' ', string)
string = re.sub(r'\'s', ' \'s', string)
string = re.sub(r'\'ve', ' \'ve', string)
string = re.sub(r'n\'t', ' n\'t', string)
string = re.sub(r'\'re', ' \'re', string)
string = re.sub(r'\'d', ' \'d', string)
string = re.sub(r'\'ll', ' \'ll', string)
string = re.sub(r',', ' , ', string)
string = re.sub(r'!', ' ! ', string)
string = re.sub(r'\(', ' \( ', string)
string = re.sub(r'\)', ' \) ', string)
string = re.sub(r'\?', ' \? ', string)
string = re.sub(r'\s{2,}', ' ', string)
return string.strip().lower()
# Load data
def load_data(data):
"""Load and return correctly labelled training data."""
x = []
y = []
for (text, subject) in data.labelled_data():
text = clean_str(text)
x.append(clean_str(text))
y.append(subject)
return (np.array(x), np.array(y))
# Build vocabulary
def build_vocab(texts):
"""Build the vocabulary from the input texts."""
max_document_length = max([len(text.split(' ')) for text in texts])
vocab_processor = learn.preprocessing.VocabularyProcessor(max_document_length)
texts = np.array(list(vocab_processor.fit_transform(texts)))
return (texts, vocab_processor)
# Randomly shuffle data
def shuffle_data(x, y):
np.random.seed(10)
np.random.shuffle(x)
np.random.shuffle(y)
# Split train/test set
def split_data(x, y):
# TODO: This is very crude, should use cross-validation
dev_sample_index = -1 * int(FLAGS.dev_sample_percentage * float(len(y)))
x_train, x_dev = x[:dev_sample_index], x[dev_sample_index:]
y_train, y_dev = y[:dev_sample_index], y[dev_sample_index:]
return ((x_train, y_train), (x_dev, y_dev))
# Training
# ==================================================
def find_output_dir():
timestamp = str(int(time.time()))
out_dir = os.path.abspath(os.path.join(os.path.curdir, 'runs', timestamp))
os.makedirs(out_dir)
return out_dir
def train(x_train, y_train, x_dev, y_dev, vocab_processor, out_dir):
with tf.Graph().as_default():
session_conf = tf.ConfigProto(
allow_soft_placement=FLAGS.allow_soft_placement,
log_device_placement=FLAGS.log_device_placement)
sess = tf.Session(config=session_conf)
with sess.as_default():
cnn = TextCNN(
sequence_length=x_train.shape[1],
num_classes=y_train.shape[1],
vocab_size=len(vocab_processor.vocabulary_),
embedding_size=FLAGS.embedding_dim,
filter_sizes=list(map(int, FLAGS.filter_sizes.split(','))),
num_filters=FLAGS.num_filters,
l2_reg_lambda=FLAGS.l2_reg_lambda)
# Define Training procedure
global_step = tf.Variable(0, name='global_step', trainable=False)
optimizer = tf.train.AdamOptimizer(1e-3)
grads_and_vars = optimizer.compute_gradients(cnn.loss)
train_op = optimizer.apply_gradients(grads_and_vars, global_step=global_step)
# Keep track of gradient values and sparsity (optional)
grad_summaries = []
for g, v in grads_and_vars:
if g is not None:
grad_hist_summary = tf.histogram_summary('{}/grad/hist'.format(v.name), g)
sparsity_summary = tf.scalar_summary('{}/grad/sparsity'.format(v.name), tf.nn.zero_fraction(g))
grad_summaries.append(grad_hist_summary)
grad_summaries.append(sparsity_summary)
grad_summaries_merged = tf.merge_summary(grad_summaries)
# Output directory for models and summaries
print('Writing to {}\n'.format(out_dir))
# Summaries for loss and accuracy
loss_summary = tf.scalar_summary('loss', cnn.loss)
acc_summary = tf.scalar_summary('accuracy', cnn.accuracy)
# Train Summaries
train_summary_op = tf.merge_summary([loss_summary, acc_summary, grad_summaries_merged])
train_summary_dir = os.path.join(out_dir, 'summaries', 'train')
train_summary_writer = tf.train.SummaryWriter(train_summary_dir, sess.graph)
# Dev summaries
dev_summary_op = tf.merge_summary([loss_summary, acc_summary])
dev_summary_dir = os.path.join(out_dir, 'summaries', 'dev')
dev_summary_writer = tf.train.SummaryWriter(dev_summary_dir, sess.graph)
# Checkpoint directory. Tensorflow assumes this directory already exists so we need to create it
checkpoint_dir = os.path.abspath(os.path.join(out_dir, 'checkpoints'))
checkpoint_prefix = os.path.join(checkpoint_dir, 'model')
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
saver = tf.train.Saver(tf.all_variables())
# Initialize all variables
sess.run(tf.initialize_all_variables())
def train_step(x_batch, y_batch):
"""
A single training step
"""
feed_dict = {
cnn.input_x: x_batch,
cnn.input_y: y_batch,
cnn.dropout_keep_prob: FLAGS.dropout_keep_prob
}
_, step, summaries, loss, accuracy = sess.run(
[train_op, global_step, train_summary_op, cnn.loss, cnn.accuracy],
feed_dict)
time_str = datetime.datetime.now().isoformat()
print('{}: step {}, loss {:g}, acc {:g}'.format(time_str, step, loss, accuracy))
train_summary_writer.add_summary(summaries, step)
def dev_step(x_batch, y_batch, writer=None):
"""
Evaluates model on a dev set
"""
feed_dict = {
cnn.input_x: x_batch,
cnn.input_y: y_batch,
cnn.dropout_keep_prob: 1.0
}
step, summaries, loss, accuracy = sess.run(
[global_step, dev_summary_op, cnn.loss, cnn.accuracy],
feed_dict)
time_str = datetime.datetime.now().isoformat()
print('{}: step {}, loss {:g}, acc {:g}'.format(time_str, step, loss, accuracy))
if writer:
writer.add_summary(summaries, step)
# Generate batches
batches = batch_iter(
list(zip(x_train, y_train)), FLAGS.batch_size, FLAGS.num_epochs)
# Training loop. For each batch...
for batch in batches:
x_batch, y_batch = zip(*batch)
train_step(x_batch, y_batch)
current_step = tf.train.global_step(sess, global_step)
if current_step % FLAGS.evaluate_every == 0:
print('\nEvaluation:')
dev_step(x_dev, y_dev, writer=dev_summary_writer)
print('')
if current_step % FLAGS.checkpoint_every == 0:
path = saver.save(sess, checkpoint_prefix, global_step=current_step)
print('Saved model checkpoint to {}\n'.format(path))
def batch_iter(data, batch_size, num_epochs, shuffle=True):
"""
Generates a batch iterator for a dataset.
"""
data = np.array(data)
data_size = len(data)
num_batches_per_epoch = int(len(data)/batch_size) + 1
for epoch in range(num_epochs):
# Shuffle the data at each epoch
if shuffle:
shuffle_indices = np.random.permutation(np.arange(data_size))
shuffled_data = data[shuffle_indices]
else:
shuffled_data = data
for batch_num in range(num_batches_per_epoch):
start_index = batch_num * batch_size
end_index = min((batch_num + 1) * batch_size, data_size)
yield shuffled_data[start_index:end_index]
# Main run function.
def main(argv=None):
print('\nParameters:')
for attr, value in sorted(FLAGS.__flags.items()):
print('{}={}'.format(attr.upper(), value))
print('')
# Train on the data.
print('Loading data...')
gutenberg_data = gutenberg.GutenbergData(FLAGS.subject_count, FLAGS.book_limit)
x, y = load_data(gutenberg_data)
#for i in xrange(len(x)):
# print('Text: %s' % x[i][:100])
# print('Subject: %s' % y[i])
#return
print('Extracting vocabulary...')
x, vocab_processor = build_vocab(x)
#for i in xrange(len(x)):
# print('Text: %s' % x[i][:100])
#return
print('Shuffling data...')
shuffle_data(x, y)
#for i in xrange(len(x)):
# print('Text: %s' % x[i][:100])
# print('Subject: %s' % y[i])
#return
print('Splitting data...')
((x_train, y_train), (x_dev, y_dev)) = split_data(x, y)
# Summarize data.
print('Vocabulary Size: {:d}'.format(len(vocab_processor.vocabulary_)))
print('Train/Dev split: {:d}/{:d}'.format(len(y_train), len(y_dev)))
# Write vocabulary
out_dir = find_output_dir()
vocab_processor.save(os.path.join(out_dir, 'vocab'))
# Write subjects data
gutenberg_data.subjects.save(os.path.join(out_dir, 'subjects'))
print('Training...')
train(x_train, y_train, x_dev, y_dev, vocab_processor, out_dir)
if __name__ == '__main__':
from tensorflow.python.platform import app
app.run()