forked from vectorclass/version2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
vectormath_hyp.h
717 lines (601 loc) · 22.1 KB
/
vectormath_hyp.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
/**************************** vectormath_hyp.h ******************************
* Author: Agner Fog
* Date created: 2014-07-09
* Last modified: 2019-08-01
* Version: 2.00.00
* Project: vector class library
* Description:
* Header file containing inline vector functions of hyperbolic and inverse
* hyperbolic functions:
* sinh hyperbolic sine
* cosh hyperbolic cosine
* tanh hyperbolic tangent
* asinh inverse hyperbolic sine
* acosh inverse hyperbolic cosine
* atanh inverse hyperbolic tangent
*
* Theory, methods and inspiration based partially on these sources:
* > Moshier, Stephen Lloyd Baluk: Methods and programs for mathematical functions.
* Ellis Horwood, 1989.
* > VDT library developed on CERN by Danilo Piparo, Thomas Hauth and
* Vincenzo Innocente, 2012, https://svnweb.cern.ch/trac/vdt
* > Cephes math library by Stephen L. Moshier 1992,
* http://www.netlib.org/cephes/
*
* For detailed instructions, see vectormath_common.h and vcl_manual.pdf
*
* (c) Copyright 2014-2019 Agner Fog.
* Apache License version 2.0 or later.
******************************************************************************/
#ifndef VECTORMATH_HYP_H
#define VECTORMATH_HYP_H 1
#include "vectormath_exp.h"
#ifdef VCL_NAMESPACE
namespace VCL_NAMESPACE {
#endif
/******************************************************************************
* Hyperbolic functions
******************************************************************************/
// Template for sinh function, double precision
// This function does not produce denormals
// Template parameters:
// VTYPE: double vector type
template<typename VTYPE>
static inline VTYPE sinh_d(VTYPE const x0) {
// The limit of abs(x) is 709.7, as defined by max_x in vectormath_exp.h for 0.5*exp(x).
// Coefficients
const double p0 = -3.51754964808151394800E5;
const double p1 = -1.15614435765005216044E4;
const double p2 = -1.63725857525983828727E2;
const double p3 = -7.89474443963537015605E-1;
const double q0 = -2.11052978884890840399E6;
const double q1 = 3.61578279834431989373E4;
const double q2 = -2.77711081420602794433E2;
const double q3 = 1.0;
// data vectors
VTYPE x, x2, y1, y2;
x = abs(x0);
auto x_small = x <= 1.0; // use Pade approximation if abs(x) <= 1
if (horizontal_or(x_small)) {
// At least one element needs small method
x2 = x*x;
y1 = polynomial_3(x2, p0, p1, p2, p3) / polynomial_3(x2, q0, q1, q2, q3);
y1 = mul_add(y1, x*x2, x); // y1 = x + x2*(x*y1);
}
if (!horizontal_and(x_small)) {
// At least one element needs big method
y2 = exp_d<VTYPE, 0, 1>(x); // 0.5 * exp(x)
y2 -= 0.25 / y2; // - 0.5 * exp(-x)
}
y1 = select(x_small, y1, y2); // choose method
y1 = sign_combine(y1, x0); // get original sign
// you can avoid the sign_combine by replacing x by x0 above, but at a loss of precision
return y1;
}
// instances of sinh_d template
static inline Vec2d sinh(Vec2d const x) {
return sinh_d(x);
}
#if MAX_VECTOR_SIZE >= 256
static inline Vec4d sinh(Vec4d const x) {
return sinh_d(x);
}
#endif // MAX_VECTOR_SIZE >= 256
#if MAX_VECTOR_SIZE >= 512
static inline Vec8d sinh(Vec8d const x) {
return sinh_d(x);
}
#endif // MAX_VECTOR_SIZE >= 512
// Template for sinh function, single precision
// This function does not produce denormals
// Template parameters:
// VTYPE: double vector type
template<typename VTYPE>
static inline VTYPE sinh_f(VTYPE const x0) {
// The limit of abs(x) is 89.0, as defined by max_x in vectormath_exp.h for 0.5*exp(x).
// Coefficients
const float r0 = 1.66667160211E-1f;
const float r1 = 8.33028376239E-3f;
const float r2 = 2.03721912945E-4f;
// data vectors
VTYPE x, x2, y1, y2;
x = abs(x0);
auto x_small = x <= 1.0f; // use polynomial approximation if abs(x) <= 1
if (horizontal_or(x_small)) {
// At least one element needs small method
x2 = x*x;
y1 = polynomial_2(x2, r0, r1, r2);
y1 = mul_add(y1, x2*x, x); // y1 = x + x2*(x*y1);
}
if (!horizontal_and(x_small)) {
// At least one element needs big method
y2 = exp_f<VTYPE, 0, 1>(x); // 0.5 * exp(x)
y2 -= 0.25f / y2; // - 0.5 * exp(-x)
}
y1 = select(x_small, y1, y2); // choose method
y1 = sign_combine(y1, x0); // get original sign
// you can avoid the sign_combine by replacing x by x0 above, but at a loss of precision
return y1;
}
// instances of sinh_f template
static inline Vec4f sinh(Vec4f const x) {
return sinh_f(x);
}
#if MAX_VECTOR_SIZE >= 256
static inline Vec8f sinh(Vec8f const x) {
return sinh_f(x);
}
#endif // MAX_VECTOR_SIZE >= 256
#if MAX_VECTOR_SIZE >= 512
static inline Vec16f sinh(Vec16f const x) {
return sinh_f(x);
}
#endif // MAX_VECTOR_SIZE >= 512
// Template for cosh function, double precision
// This function does not produce denormals
// Template parameters:
// VTYPE: double vector type
template<typename VTYPE>
static inline VTYPE cosh_d(VTYPE const x0) {
// The limit of abs(x) is 709.7, as defined by max_x in vectormath_exp.h for 0.5*exp(x).
// data vectors
VTYPE x, y;
x = abs(x0);
y = exp_d<VTYPE, 0, 1>(x); // 0.5 * exp(x)
y += 0.25 / y; // + 0.5 * exp(-x)
return y;
}
// instances of sinh_d template
static inline Vec2d cosh(Vec2d const x) {
return cosh_d(x);
}
#if MAX_VECTOR_SIZE >= 256
static inline Vec4d cosh(Vec4d const x) {
return cosh_d(x);
}
#endif // MAX_VECTOR_SIZE >= 256
#if MAX_VECTOR_SIZE >= 512
static inline Vec8d cosh(Vec8d const x) {
return cosh_d(x);
}
#endif // MAX_VECTOR_SIZE >= 512
// Template for cosh function, single precision
// This function does not produce denormals
// Template parameters:
// VTYPE: double vector type
template<typename VTYPE>
static inline VTYPE cosh_f(VTYPE const x0) {
// The limit of abs(x) is 89.0, as defined by max_x in vectormath_exp.h for 0.5*exp(x).
// data vectors
VTYPE x, y;
x = abs(x0);
y = exp_f<VTYPE, 0, 1>(x); // 0.5 * exp(x)
y += 0.25f / y; // + 0.5 * exp(-x)
return y;
}
// instances of sinh_d template
static inline Vec4f cosh(Vec4f const x) {
return cosh_f(x);
}
#if MAX_VECTOR_SIZE >= 256
static inline Vec8f cosh(Vec8f const x) {
return cosh_f(x);
}
#endif // MAX_VECTOR_SIZE >= 256
#if MAX_VECTOR_SIZE >= 512
static inline Vec16f cosh(Vec16f const x) {
return cosh_f(x);
}
#endif // MAX_VECTOR_SIZE >= 512
// Template for tanh function, double precision
// This function does not produce denormals
// Template parameters:
// VTYPE: double vector type
template<typename VTYPE>
static inline VTYPE tanh_d(VTYPE const x0) {
// Coefficients
const double p0 = -1.61468768441708447952E3;
const double p1 = -9.92877231001918586564E1;
const double p2 = -9.64399179425052238628E-1;
const double q0 = 4.84406305325125486048E3;
const double q1 = 2.23548839060100448583E3;
const double q2 = 1.12811678491632931402E2;
const double q3 = 1.0;
// data vectors
VTYPE x, x2, y1, y2;
x = abs(x0);
auto x_small = x <= 0.625; // use Pade approximation if abs(x) <= 5/8
if (horizontal_or(x_small)) {
// At least one element needs small method
x2 = x*x;
y1 = polynomial_2(x2, p0, p1, p2) / polynomial_3(x2, q0, q1, q2, q3);
y1 = mul_add(y1, x2*x, x); // y1 = x + x2*(x*y1);
}
if (!horizontal_and(x_small)) {
// At least one element needs big method
y2 = exp(x+x); // exp(2*x)
y2 = 1.0 - 2.0 / (y2 + 1.0); // tanh(x)
}
auto x_big = x > 350.;
y1 = select(x_small, y1, y2); // choose method
y1 = select(x_big, 1.0, y1); // avoid overflow
y1 = sign_combine(y1, x0); // get original sign
return y1;
}
// instances of tanh_d template
static inline Vec2d tanh(Vec2d const x) {
return tanh_d(x);
}
#if MAX_VECTOR_SIZE >= 256
static inline Vec4d tanh(Vec4d const x) {
return tanh_d(x);
}
#endif // MAX_VECTOR_SIZE >= 256
#if MAX_VECTOR_SIZE >= 512
static inline Vec8d tanh(Vec8d const x) {
return tanh_d(x);
}
#endif // MAX_VECTOR_SIZE >= 512
// Template for tanh function, single precision
// This function does not produce denormals
// Template parameters:
// VTYPE: double vector type
template<typename VTYPE>
static inline VTYPE tanh_f(VTYPE const x0) {
// The limit of abs(x) is 89.0, as defined by max_x in vectormath_exp.h for 0.5*exp(x).
// Coefficients
const float r0 = -3.33332819422E-1f;
const float r1 = 1.33314422036E-1f;
const float r2 = -5.37397155531E-2f;
const float r3 = 2.06390887954E-2f;
const float r4 = -5.70498872745E-3f;
// data vectors
VTYPE x, x2, y1, y2;
x = abs(x0);
auto x_small = x <= 0.625f; // use polynomial approximation if abs(x) <= 5/8
if (horizontal_or(x_small)) {
// At least one element needs small method
x2 = x*x;
y1 = polynomial_4(x2, r0, r1, r2, r3, r4);
y1 = mul_add(y1, x2*x, x); // y1 = x + (x2*x)*y1;
}
if (!horizontal_and(x_small)) {
// At least one element needs big method
y2 = exp(x+x); // exp(2*x)
y2 = 1.0f - 2.0f / (y2 + 1.0f); // tanh(x)
}
auto x_big = x > 44.4f;
y1 = select(x_small, y1, y2); // choose method
y1 = select(x_big, 1.0f, y1); // avoid overflow
y1 = sign_combine(y1, x0); // get original sign
return y1;
}
// instances of tanh_f template
static inline Vec4f tanh(Vec4f const x) {
return tanh_f(x);
}
#if MAX_VECTOR_SIZE >= 256
static inline Vec8f tanh(Vec8f const x) {
return tanh_f(x);
}
#endif // MAX_VECTOR_SIZE >= 256
#if MAX_VECTOR_SIZE >= 512
static inline Vec16f tanh(Vec16f const x) {
return tanh_f(x);
}
#endif // MAX_VECTOR_SIZE >= 512
/******************************************************************************
* Inverse hyperbolic functions
******************************************************************************/
// Template for asinh function, double precision
// This function does not produce denormals
// Template parameters:
// VTYPE: double vector type
template<typename VTYPE>
static inline VTYPE asinh_d(VTYPE const x0) {
// Coefficients
const double p0 = -5.56682227230859640450E0;
const double p1 = -9.09030533308377316566E0;
const double p2 = -4.37390226194356683570E0;
const double p3 = -5.91750212056387121207E-1;
const double p4 = -4.33231683752342103572E-3;
const double q0 = 3.34009336338516356383E1;
const double q1 = 6.95722521337257608734E1;
const double q2 = 4.86042483805291788324E1;
const double q3 = 1.28757002067426453537E1;
const double q4 = 1.0;
// data vectors
VTYPE x, x2, y1, y2;
x2 = x0 * x0;
x = abs(x0);
auto x_small = x <= 0.533; // use Pade approximation if abs(x) <= 0.5
// Both methods give the highest error close to 0.5.
// This limit is adjusted for minimum error
auto x_huge = x > 1.E20; // simple approximation, avoid overflow
if (horizontal_or(x_small)) {
// At least one element needs small method
y1 = polynomial_4(x2, p0, p1, p2, p3, p4) / polynomial_4(x2, q0, q1, q2, q3, q4);
y1 = mul_add(y1, x2*x, x); // y1 = x + (x2*x)*y1;
}
if (!horizontal_and(x_small)) {
// At least one element needs big method
y2 = log(x + sqrt(x2 + 1.0));
if (horizontal_or(x_huge)) {
// At least one element needs huge method to avoid overflow
y2 = select(x_huge, log(x) + VM_LN2, y2);
}
}
y1 = select(x_small, y1, y2); // choose method
y1 = sign_combine(y1, x0); // get original sign
return y1;
}
// instances of asinh_d template
static inline Vec2d asinh(Vec2d const x) {
return asinh_d(x);
}
#if MAX_VECTOR_SIZE >= 256
static inline Vec4d asinh(Vec4d const x) {
return asinh_d(x);
}
#endif // MAX_VECTOR_SIZE >= 256
#if MAX_VECTOR_SIZE >= 512
static inline Vec8d asinh(Vec8d const x) {
return asinh_d(x);
}
#endif // MAX_VECTOR_SIZE >= 512
// Template for asinh function, single precision
// This function does not produce denormals
// Template parameters:
// VTYPE: double vector type
template<typename VTYPE>
static inline VTYPE asinh_f(VTYPE const x0) {
// Coefficients
const float r0 = -1.6666288134E-1f;
const float r1 = 7.4847586088E-2f;
const float r2 = -4.2699340972E-2f;
const float r3 = 2.0122003309E-2f;
// data vectors
VTYPE x, x2, y1, y2;
x2 = x0 * x0;
x = abs(x0);
auto x_small = x <= 0.51f; // use polynomial approximation if abs(x) <= 0.5
auto x_huge = x > 1.E10f; // simple approximation, avoid overflow
if (horizontal_or(x_small)) {
// At least one element needs small method
y1 = polynomial_3(x2, r0, r1, r2, r3);
y1 = mul_add(y1, x2*x, x); // y1 = x + (x2*x)*y1;
}
if (!horizontal_and(x_small)) {
// At least one element needs big method
y2 = log(x + sqrt(x2 + 1.0f));
if (horizontal_or(x_huge)) {
// At least one element needs huge method to avoid overflow
y2 = select(x_huge, log(x) + (float)VM_LN2, y2);
}
}
y1 = select(x_small, y1, y2); // choose method
y1 = sign_combine(y1, x0); // get original sign
return y1;
}
// instances of asinh_f template
static inline Vec4f asinh(Vec4f const x) {
return asinh_f(x);
}
#if MAX_VECTOR_SIZE >= 256
static inline Vec8f asinh(Vec8f const x) {
return asinh_f(x);
}
#endif // MAX_VECTOR_SIZE >= 256
#if MAX_VECTOR_SIZE >= 512
static inline Vec16f asinh(Vec16f const x) {
return asinh_f(x);
}
#endif // MAX_VECTOR_SIZE >= 512
// Template for acosh function, double precision
// This function does not produce denormals
// Template parameters:
// VTYPE: double vector type
template<typename VTYPE>
static inline VTYPE acosh_d(VTYPE const x0) {
// Coefficients
const double p0 = 1.10855947270161294369E5;
const double p1 = 1.08102874834699867335E5;
const double p2 = 3.43989375926195455866E4;
const double p3 = 3.94726656571334401102E3;
const double p4 = 1.18801130533544501356E2;
const double q0 = 7.83869920495893927727E4;
const double q1 = 8.29725251988426222434E4;
const double q2 = 2.97683430363289370382E4;
const double q3 = 4.15352677227719831579E3;
const double q4 = 1.86145380837903397292E2;
const double q5 = 1.0;
// data vectors
VTYPE x1, y1, y2;
x1 = x0 - 1.0;
auto undef = x0 < 1.0; // result is NAN
auto x_small = x1 < 0.49; // use Pade approximation if abs(x-1) < 0.5
auto x_huge = x1 > 1.E20; // simple approximation, avoid overflow
if (horizontal_or(x_small)) {
// At least one element needs small method
y1 = sqrt(x1) * (polynomial_4(x1, p0, p1, p2, p3, p4) / polynomial_5(x1, q0, q1, q2, q3, q4, q5));
// x < 1 generates NAN
y1 = select(undef, nan_vec<VTYPE>(NAN_HYP), y1);
}
if (!horizontal_and(x_small)) {
// At least one element needs big method
y2 = log(x0 + sqrt(mul_sub(x0,x0,1.0)));
if (horizontal_or(x_huge)) {
// At least one element needs huge method to avoid overflow
y2 = select(x_huge, log(x0) + VM_LN2, y2);
}
}
y1 = select(x_small, y1, y2); // choose method
return y1;
}
// instances of acosh_d template
static inline Vec2d acosh(Vec2d const x) {
return acosh_d(x);
}
#if MAX_VECTOR_SIZE >= 256
static inline Vec4d acosh(Vec4d const x) {
return acosh_d(x);
}
#endif // MAX_VECTOR_SIZE >= 256
#if MAX_VECTOR_SIZE >= 512
static inline Vec8d acosh(Vec8d const x) {
return acosh_d(x);
}
#endif // MAX_VECTOR_SIZE >= 512
// Template for acosh function, single precision
// This function does not produce denormals
// Template parameters:
// VTYPE: double vector type
template<typename VTYPE>
static inline VTYPE acosh_f(VTYPE const x0) {
// Coefficients
const float r0 = 1.4142135263E0f;
const float r1 = -1.1784741703E-1f;
const float r2 = 2.6454905019E-2f;
const float r3 = -7.5272886713E-3f;
const float r4 = 1.7596881071E-3f;
// data vectors
VTYPE x1, y1, y2;
x1 = x0 - 1.0f;
auto undef = x0 < 1.0f; // result is NAN
auto x_small = x1 < 0.49f; // use Pade approximation if abs(x-1) < 0.5
auto x_huge = x1 > 1.E10f; // simple approximation, avoid overflow
if (horizontal_or(x_small)) {
// At least one element needs small method
y1 = sqrt(x1) * polynomial_4(x1, r0, r1, r2, r3, r4);
// x < 1 generates NAN
y1 = select(undef, nan_vec<VTYPE>(NAN_HYP), y1);
}
if (!horizontal_and(x_small)) {
// At least one element needs big method
y2 = log(x0 + sqrt(mul_sub(x0,x0,1.0)));
if (horizontal_or(x_huge)) {
// At least one element needs huge method to avoid overflow
y2 = select(x_huge, log(x0) + (float)VM_LN2, y2);
}
}
y1 = select(x_small, y1, y2); // choose method
return y1;
}
// instances of acosh_f template
static inline Vec4f acosh(Vec4f const x) {
return acosh_f(x);
}
#if MAX_VECTOR_SIZE >= 256
static inline Vec8f acosh(Vec8f const x) {
return acosh_f(x);
}
#endif // MAX_VECTOR_SIZE >= 256
#if MAX_VECTOR_SIZE >= 512
static inline Vec16f acosh(Vec16f const x) {
return acosh_f(x);
}
#endif // MAX_VECTOR_SIZE >= 512
// Template for atanh function, double precision
// This function does not produce denormals
// Template parameters:
// VTYPE: double vector type
template<typename VTYPE>
static inline VTYPE atanh_d(VTYPE const x0) {
// Coefficients
const double p0 = -3.09092539379866942570E1;
const double p1 = 6.54566728676544377376E1;
const double p2 = -4.61252884198732692637E1;
const double p3 = 1.20426861384072379242E1;
const double p4 = -8.54074331929669305196E-1;
const double q0 = -9.27277618139601130017E1;
const double q1 = 2.52006675691344555838E2;
const double q2 = -2.49839401325893582852E2;
const double q3 = 1.08938092147140262656E2;
const double q4 = -1.95638849376911654834E1;
const double q5 = 1.0;
// data vectors
VTYPE x, x2, y1, y2, y3;
x = abs(x0);
auto x_small = x < 0.5; // use Pade approximation if abs(x) < 0.5
if (horizontal_or(x_small)) {
// At least one element needs small method
x2 = x * x;
y1 = polynomial_4(x2, p0, p1, p2, p3, p4) / polynomial_5(x2, q0, q1, q2, q3, q4, q5);
y1 = mul_add(y1, x2*x, x);
}
if (!horizontal_and(x_small)) {
// At least one element needs big method
y2 = log((1.0+x)/(1.0-x)) * 0.5;
// check if out of range
y3 = select(x == 1.0, infinite_vec<VTYPE>(), nan_vec<VTYPE>(NAN_HYP));
y2 = select(x >= 1.0, y3, y2);
}
y1 = select(x_small, y1, y2); // choose method
y1 = sign_combine(y1, x0); // get original sign
return y1;
}
// instances of atanh_d template
static inline Vec2d atanh(Vec2d const x) {
return atanh_d(x);
}
#if MAX_VECTOR_SIZE >= 256
static inline Vec4d atanh(Vec4d const x) {
return atanh_d(x);
}
#endif // MAX_VECTOR_SIZE >= 256
#if MAX_VECTOR_SIZE >= 512
static inline Vec8d atanh(Vec8d const x) {
return atanh_d(x);
}
#endif // MAX_VECTOR_SIZE >= 512
// Template for atanh function, single precision
// This function does not produce denormals
// Template parameters:
// VTYPE: double vector type
template<typename VTYPE>
static inline VTYPE atanh_f(VTYPE const x0) {
// Coefficients
const float r0 = 3.33337300303E-1f;
const float r1 = 1.99782164500E-1f;
const float r2 = 1.46691431730E-1f;
const float r3 = 8.24370301058E-2f;
const float r4 = 1.81740078349E-1f;
// data vectors
VTYPE x, x2, y1, y2, y3;
x = abs(x0);
auto x_small = x < 0.5f; // use polynomial approximation if abs(x) < 0.5
if (horizontal_or(x_small)) {
// At least one element needs small method
x2 = x * x;
y1 = polynomial_4(x2, r0, r1, r2, r3, r4);
y1 = mul_add(y1, x2*x, x);
}
if (!horizontal_and(x_small)) {
// At least one element needs big method
y2 = log((1.0f+x)/(1.0f-x)) * 0.5f;
// check if out of range
y3 = select(x == 1.0f, infinite_vec<VTYPE>(), nan_vec<VTYPE>(NAN_HYP));
y2 = select(x >= 1.0f, y3, y2);
}
y1 = select(x_small, y1, y2); // choose method
y1 = sign_combine(y1, x0); // get original sign
return y1;
}
// instances of atanh_f template
static inline Vec4f atanh(Vec4f const x) {
return atanh_f(x);
}
#if MAX_VECTOR_SIZE >= 256
static inline Vec8f atanh(Vec8f const x) {
return atanh_f(x);
}
#endif // MAX_VECTOR_SIZE >= 256
#if MAX_VECTOR_SIZE >= 512
static inline Vec16f atanh(Vec16f const x) {
return atanh_f(x);
}
#endif // MAX_VECTOR_SIZE >= 512
#ifdef VCL_NAMESPACE
}
#endif
#endif