forked from pytorch/torchtune
-
Notifications
You must be signed in to change notification settings - Fork 1
/
8B_qdora_single_device.yaml
111 lines (96 loc) · 3.21 KB
/
8B_qdora_single_device.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
# Config for single device QDoRA finetuning in lora_finetune_single_device.py
# using a Llama3 8B Instruct model
#
# This config assumes that you've run the following command before launching
# this run:
# tune download meta-llama/Meta-Llama-3-8B-Instruct --output-dir /tmp/Meta-Llama-3-8B-Instruct --hf-token <HF_TOKEN>
#
# To launch on a single device, run the following command from root:
# tune run lora_finetune_single_device --config llama3/8B_qdora_single_device
#
# You can add specific overrides through the command line. For example
# to override the checkpointer directory while launching training
# you can run:
# tune run lora_finetune_single_device --config llama3/8B_qdora_single_device checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>
#
# This config works only for training on single device.
# Model Arguments
model:
_component_: torchtune.models.llama3.lora_llama3_8b
lora_attn_modules: ['q_proj', 'v_proj', 'output_proj']
apply_lora_to_mlp: True
apply_lora_to_output: False
lora_rank: 8 # higher increases accuracy and memory
lora_alpha: 16 # usually alpha=2*rank
use_dora: True
quantize_base: True
# Tokenizer
tokenizer:
_component_: torchtune.models.llama3.llama3_tokenizer
path: /tmp/Meta-Llama-3-8B-Instruct/original/tokenizer.model
checkpointer:
_component_: torchtune.training.FullModelMetaCheckpointer
checkpoint_dir: /tmp/Meta-Llama-3-8B-Instruct/original/
checkpoint_files: [
consolidated.00.pth
]
recipe_checkpoint: null
output_dir: /tmp/Meta-Llama-3-8B-Instruct/
model_type: LLAMA3
resume_from_checkpoint: False
# Dataset and Sampler
dataset:
_component_: torchtune.datasets.alpaca_cleaned_dataset
packed: False # True increases speed
seed: null
shuffle: True
batch_size: 2
# Optimizer and Scheduler
optimizer:
_component_: torch.optim.AdamW
fused: True
weight_decay: 0.01
lr: 3e-4
lr_scheduler:
_component_: torchtune.training.lr_schedulers.get_cosine_schedule_with_warmup
num_warmup_steps: 100
loss:
_component_: torch.nn.CrossEntropyLoss
# Training
epochs: 1
max_steps_per_epoch: null
gradient_accumulation_steps: 8 # Use to increase virtual batch size
compile: False # pytorch compile, set to true for better perf/memory
# Logging
output_dir: /tmp/qdora_finetune_output
metric_logger:
_component_: torchtune.training.metric_logging.DiskLogger
log_dir: ${output_dir}
log_every_n_steps: 1
log_peak_memory_stats: True
# Environment
device: cuda
dtype: bf16
enable_activation_checkpointing: True # True reduces memory
enable_activation_offloading: False # True reduces memory
# Show case the usage of pytorch profiler
# Set enabled to False as it's only needed for debugging training
profiler:
_component_: torchtune.training.setup_torch_profiler
enabled: False
#Output directory of trace artifacts
output_dir: ${output_dir}/profiling_outputs
#`torch.profiler.ProfilerActivity` types to trace
cpu: True
cuda: True
#trace options passed to `torch.profiler.profile`
profile_memory: False
with_stack: False
record_shapes: True
with_flops: False
# `torch.profiler.schedule` options:
# wait_steps -> wait, warmup_steps -> warmup, active_steps -> active, num_cycles -> repeat
wait_steps: 5
warmup_steps: 5
active_steps: 2
num_cycles: 1