-
Notifications
You must be signed in to change notification settings - Fork 30
/
dataset_testing.py
339 lines (265 loc) · 12.5 KB
/
dataset_testing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import torch
import numpy as np
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader
from pathlib import Path
import cv2
import logging
from typing import Dict, List
import seaborn as sns
from tqdm import tqdm
from dataset import VASADataset
from rich.console import Console
import torch.nn.functional as F
from rich.traceback import install
console = Console(width=3000)
# Install Rich traceback handling
# install(show_locals=True)
install()
class VASADatasetTester:
"""Comprehensive testing suite for VASA dataset implementation"""
def __init__(self, dataset: VASADataset, save_dir: str = "test_results"):
self.dataset = dataset
self.save_dir = Path(save_dir)
self.save_dir.mkdir(exist_ok=True)
# Setup logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler(self.save_dir / 'test_log.txt'),
logging.StreamHandler()
]
)
self.logger = logging.getLogger(__name__)
def run_all_tests(self):
"""Run all sanity checks"""
self.logger.info("Starting VASA dataset sanity checks...")
# Basic dataset checks
self.test_dataset_initialization()
# Test single sample
sample = self.test_single_sample()
# Test batch loading
self.test_batch_loading()
# Test specific components
self.test_emotion_extraction(sample)
self.test_audio_features(sample)
self.test_face_attributes(sample)
# Test data distributions
self.analyze_distributions()
self.logger.info("All sanity checks completed!")
def test_dataset_initialization(self):
"""Test basic dataset setup"""
self.logger.info("\nTesting dataset initialization...")
try:
# Check video paths
assert len(self.dataset.video_paths) > 0, "No video paths found"
self.logger.info(f"Found {len(self.dataset.video_paths)} videos")
# Check file existence
for path in self.dataset.video_paths[:5]: # Check first 5
assert Path(path).exists(), f"Video file not found: {path}"
# Get audio path if available
audio_path = self.dataset.get_audio_path(path)
if audio_path is not None:
assert Path(audio_path).exists(), f"Audio file not found: {audio_path}"
# Check components initialization
assert self.dataset.face_analyzer is not None, "Face analyzer not initialized"
assert self.dataset.emotion_recognizer is not None, "Emotion recognizer not initialized"
assert self.dataset.audio_model is not None, "Audio model not initialized"
self.logger.info("✅ Dataset initialization tests passed")
except Exception as e:
self.logger.error(f"🔥Dataset initialization failed: {str(e)}")
raise
def test_single_sample(self) -> Dict[str, torch.Tensor]:
"""Test single sample extraction"""
self.logger.info("\nTesting single sample extraction...")
try:
sample = self.dataset[0]
# Check all required keys
required_keys = ['frames', 'audio_features', 'gaze', 'distance', 'emotion']
for key in required_keys:
assert key in sample, f"Missing key in sample: {key}"
# Check shapes
self.logger.info("Sample shapes:")
for key, value in sample.items():
if isinstance(value, torch.Tensor):
self.logger.info(f"{key}: {value.shape}")
# Basic tensor checks
assert not torch.isnan(value).any(), f"NaN values found in {key}"
assert not torch.isinf(value).any(), f"Inf values found in {key}"
self.visualize_sample(sample)
self.logger.info("✅ Single sample test passed")
return sample
except Exception as e:
self.logger.error(f"🔥Single sample test failed: {str(e)}")
raise
def test_batch_loading(self):
"""Test batch loading functionality"""
self.logger.info("\nTesting batch loading...")
try:
loader = DataLoader(
self.dataset,
batch_size=4,
shuffle=True,
num_workers=2
)
batch = next(iter(loader))
# Check batch shapes
self.logger.info("Batch shapes:")
for key, value in batch.items():
if isinstance(value, torch.Tensor):
self.logger.info(f"{key}: {value.shape}")
assert value.shape[0] == 4, f"Incorrect batch size for {key}"
self.logger.info("✅ Batch loading test passed")
except Exception as e:
self.logger.error(f"🔥Batch loading test failed: {str(e)}")
raise
def test_emotion_extraction(self, sample: Dict[str, torch.Tensor]):
"""Test emotion extraction specifics"""
self.logger.info("\nTesting emotion extraction...")
try:
emotion_tensor = sample['emotion']
# Check emotion tensor properties
assert emotion_tensor.shape[-1] == 8, "Incorrect number of emotion categories"
assert torch.allclose(torch.sum(F.softmax(emotion_tensor, dim=-1), dim=-1),
torch.ones_like(torch.sum(F.softmax(emotion_tensor, dim=-1), dim=-1))), \
"Emotion probabilities don't sum to 1"
# Visualize emotion distributions
self.visualize_emotions(emotion_tensor)
self.logger.info("✅ Emotion extraction test passed")
except Exception as e:
self.logger.error(f"🔥Emotion extraction test failed: {str(e)}")
raise
def test_audio_features(self, sample: Dict[str, torch.Tensor]):
"""Test audio feature extraction"""
self.logger.info("\nTesting audio features...")
try:
audio_features = sample['audio_features']
# Check audio feature properties
assert len(audio_features.shape) == 3, "Incorrect audio feature dimensions"
assert not torch.isnan(audio_features).any(), "NaN values in audio features"
# Visualize audio features
self.visualize_audio_features(audio_features)
self.logger.info("✅ Audio feature test passed")
except Exception as e:
self.logger.error(f"🔥Audio feature test failed: {str(e)}")
raise
def test_face_attributes(self, sample: Dict[str, torch.Tensor]):
"""Test face attribute extraction"""
self.logger.info("\nTesting face attributes...")
try:
# Check gaze properties
assert len(sample['gaze'].shape) == 2, "Incorrect gaze dimensions"
assert sample['gaze'].shape[-1] == 2, "Incorrect gaze vector size"
# Check distance properties
assert len(sample['distance'].shape) == 2, "Incorrect distance dimensions"
assert 0 <= sample['distance'].min() and sample['distance'].max() <= 1, \
"Distance not normalized"
self.visualize_face_attributes(sample)
self.logger.info("✅ Face attribute test passed")
except Exception as e:
self.logger.error(f"🔥Face attribute test failed: {str(e)}")
raise
def analyze_distributions(self):
"""Analyze data distributions"""
self.logger.info("\nAnalyzing data distributions...")
try:
# Sample a subset for distribution analysis
n_samples = min(100, len(self.dataset))
samples = [self.dataset[i] for i in tqdm(range(n_samples))]
# Analyze distributions
distributions = {
'gaze_theta': torch.cat([s['gaze'][:, 0] for s in samples]),
'gaze_phi': torch.cat([s['gaze'][:, 1] for s in samples]),
'distance': torch.cat([s['distance'] for s in samples]),
'emotion_max': torch.cat([torch.max(F.softmax(s['emotion'], dim=-1), dim=-1)[0]
for s in samples])
}
self.visualize_distributions(distributions)
self.logger.info("✅ Distribution analysis completed")
except Exception as e:
self.logger.error(f"🔥Distribution analysis failed: {str(e)}")
raise
def visualize_sample(self, sample: Dict[str, torch.Tensor]):
"""Visualize a single sample"""
fig, axes = plt.subplots(2, 4, figsize=(20, 10))
# Plot frames
for i in range(4):
frame = sample['frames'][i].permute(1, 2, 0).numpy()
axes[0, i].imshow(frame)
axes[0, i].axis('off')
axes[0, i].set_title(f'Frame {i}')
# Plot emotion probabilities
emotions = F.softmax(sample['emotion'][0], dim=-1)
axes[1, 0].bar(range(8), emotions.numpy())
axes[1, 0].set_title('Emotions')
# Plot gaze
axes[1, 1].scatter(sample['gaze'][:, 0], sample['gaze'][:, 1])
axes[1, 1].set_title('Gaze Distribution')
# Plot distance
axes[1, 2].plot(sample['distance'].numpy())
axes[1, 2].set_title('Head Distance')
# Plot audio features
axes[1, 3].imshow(sample['audio_features'][0].numpy().T)
axes[1, 3].set_title('Audio Features')
plt.tight_layout()
plt.savefig(self.save_dir / 'sample_visualization.png')
plt.close()
def visualize_emotions(self, emotion_tensor: torch.Tensor):
"""Visualize emotion distributions"""
emotions_prob = F.softmax(emotion_tensor, dim=-1)
plt.figure(figsize=(10, 6))
sns.boxplot(data=emotions_prob.numpy())
plt.title('Emotion Distribution')
emotion_labels = ['Anger', 'Contempt', 'Disgust', 'Fear',
'Happy', 'Sad', 'Surprise', 'Neutral']
plt.xticks(range(8), emotion_labels, rotation=45)
plt.tight_layout()
plt.savefig(self.save_dir / 'emotion_distribution.png')
plt.close()
def visualize_audio_features(self, audio_features: torch.Tensor):
"""Visualize audio features"""
plt.figure(figsize=(12, 4))
plt.imshow(audio_features[0].numpy().T, aspect='auto')
plt.colorbar()
plt.title('Audio Features')
plt.tight_layout()
plt.savefig(self.save_dir / 'audio_features.png')
plt.close()
def visualize_face_attributes(self, sample: Dict[str, torch.Tensor]):
"""Visualize face attributes"""
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))
# Gaze plot
ax1.scatter(sample['gaze'][:, 0], sample['gaze'][:, 1])
ax1.set_title('Gaze Distribution')
ax1.set_xlabel('θ (yaw)')
ax1.set_ylabel('φ (pitch)')
# Distance plot
ax2.plot(sample['distance'].numpy())
ax2.set_title('Head Distance')
plt.tight_layout()
plt.savefig(self.save_dir / 'face_attributes.png')
plt.close()
def visualize_distributions(self, distributions: Dict[str, torch.Tensor]):
"""Visualize data distributions"""
fig, axes = plt.subplots(2, 2, figsize=(12, 12))
axes = axes.ravel()
for i, (name, data) in enumerate(distributions.items()):
sns.histplot(data=data.numpy(), ax=axes[i])
axes[i].set_title(name)
plt.tight_layout()
plt.savefig(self.save_dir / 'distributions.png')
plt.close()
if __name__ == "__main__":
# Example usage
dataset = VASADataset(
video_folder="./junk/",
max_videos=100,
frame_size=(512, 512),
sequence_length=25,
cache_audio=True, # Enable audio caching
preextract_audio=True,
random_seed=42
)
tester = VASADatasetTester(dataset)
tester.run_all_tests()