-
Notifications
You must be signed in to change notification settings - Fork 2
/
quadrules.py
236 lines (185 loc) · 6.8 KB
/
quadrules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
""" python implementation of lgwt.m and qaud2d.m"""
import numpy as np
def getQuadPts1D(N, a, b):
"""
adapted from lwgt.m
This script is for computing definite integrals using Legendre-Gauss
Quadrature. Computes the Legendre-Gauss nodes and weights on an interval
[a,b] with truncation order N
Suppose you have a continuous function f(x) which is defined on [a,b]
which you can evaluate at any x in [a,b]. Simply evaluate it at all of
the values contained in the x vector to obtain a vector f. Then compute
the definite integral using sum(f.*w)
Orignially written in matlab by Greg von Winckel - 02/25/2004
Parameters
----------
N : int
number of evaluation points
a : float
lower interval bound
b : float
upper interval bound
"""
N = N-1
N1 = N+1
N2 = N+2
xu = np.linspace(-1, 1, N1)
# Initial guess
y = np.cos((2*np.arange(N+1) + 1)*np.pi/(2*N+2)) + (0.27 / N1) * np.sin(np.pi * xu * N/N2)
# Legendre-Gauss Vandermonde Matrix
L = np.zeros((N1, N2))
# Compute the zeros of the N+1 Legendre Polynomial
# using the recursion relation and the Newton-Raphson method
y0 = 2
# Iterate until new points are uniformly within epsilon of old points
while np.max(np.abs(y-y0)) > np.finfo(float).eps:
L[:, 0] = 1
L[:, 1] = y
for k in np.arange(2, N1+1):
L[:, k] = ((2*k-1)*y*L[:, k-1]-(k-1)*L[:, k-2])/k
Lp = (N2)*(L[:, N1-1] - y*L[:, N2-1])/(1-y**2)
y0 = y
y = y0 - L[:, N2-1]/Lp
# Linear map from[-1, 1] to[a, b]
x = (a*(1-y)+b*(1+y))/2
# Compute the weights
w = (b-a)/((1-y ** 2)*Lp ** 2)*(float(N2)/N1)**2
return x[::-1], w[::-1]
def getQuadPtsTri(order):
"""
from quad2d.c
Dunavant points generated with .m code written by John Burkard
http://people.scs.fsu.edu/~burkardt/f_src/dunavant/dunavant.html
1. David Dunavant,
High Degree Efficient Symmetrical Gaussian Quadrature Rules for the Triangle,
International Journal for Numerical Methods in Engineering,
Volume 21, 1985, pages 1129-1148.
2. James Lyness, Dennis Jespersen,
Moderate Degree Symmetric Quadrature Rules for the Triangle,
Journal of the Institute of Mathematics and its Applications,
Volume 15, Number 1, February 1975, pages 19-32.
"""
if order == 0 or order == 1:
quadPts = [[0.333333333333333, 0.333333333333333]]
quadWts = [0.500000000000000]
elif order == 2:
quadPts = [[0.666666666666667, 0.166666666666667],
[0.166666666666667, 0.166666666666667],
[0.166666666666667, 0.666666666666667]]
quadWts = [0.166666666666666,
0.166666666666666,
0.166666666666666]
elif order == 3:
quadPts = [[0.333333333333333, 0.333333333333333],
[0.600000000000000, 0.200000000000000],
[0.200000000000000, 0.200000000000000],
[0.200000000000000, 0.600000000000000]]
quadWts = [-0.281250000000000,
0.260416666666667,
0.260416666666667,
0.260416666666667]
elif order == 4:
quadPts = [[0.108103018168070, 0.445948490915965],
[0.445948490915965, 0.445948490915965],
[0.445948490915965, 0.108103018168070],
[0.816847572980459, 0.091576213509771],
[0.091576213509771, 0.091576213509771],
[0.091576213509771, 0.816847572980459]]
quadWts = [0.111690794839005,
0.111690794839005,
0.111690794839005,
0.054975871827661,
0.054975871827661,
0.054975871827661]
elif order == 5:
quadPts = [[0.333333333333333, 0.333333333333333],
[0.059715871789770, 0.470142064105115],
[0.470142064105115, 0.470142064105115],
[0.470142064105115, 0.059715871789770],
[0.797426985353087, 0.101286507323456],
[0.101286507323456, 0.101286507323456],
[0.101286507323456, 0.797426985353087]]
quadWts = [0.112500000000000,
0.066197076394253,
0.066197076394253,
0.066197076394253,
0.062969590272414,
0.062969590272414,
0.062969590272414]
else:
raise NotImplementedError
return np.array(quadPts), np.array(quadWts)
def getTriLagrangeBasis2D(p):
# % calculates coeffs for full-order Lagrange basis of order p
# % reference element is a unit isoceles right triangle
xi = np.linspace(0, 1, p+1)
eta = xi
N = (p+1)*(p+2)/2
# % number of basis functions
A = np.zeros((N, N))
C = A
i = 0
# % build A-matrix
for iy in range(p+1):
for ix in range(p-iy+1): # loop over nodes
k = 0
for s in range(p+1):
for r in range(p-s+1): # % loop over monomials
A[i, k] = xi[ix]**r * eta[iy]**s
k = k+1
i = i + 1
C = np.linalg.inv(A)
C = C.T
# compute dPhi_dxi and dPhi_deta
# hard to explain but iw you work through it by hand this is the pattern emerges
Cx = np.zeros(C.shape)
Cy = np.zeros(C.shape)
kk = 0
ll = p+1
for ii in range(1, p+1):
# print(ii, p+1-ii)
for jj in range(1, p+2-ii):
# print(jj, ii, kk, ll)
Cx[:, kk] = jj*C[:, kk+1]
Cy[:, kk] = ii*C[:, ll]
kk += 1
ll += 1
# print('zeros', kk)
Cx[:, kk] = np.zeros(N)
kk += 1
def basis(Xi):
# evaluates the jth basis function at (xi, eta) in reference space
X = np.zeros(N)
# Phi = np.zeros(N)
idx = 0
for s in range(p+1):
for r in range(p-s+1): # % loop over monomials
X[idx] = Xi[0]**r * Xi[1]**s
idx += 1
vals = np.sum(C*X, axis=1)
gradXi = np.sum(Cx*X, axis=1)
gradEta = np.sum(Cy*X, axis=1)
# import ipdb
# ipdb.set_trace()
return vals, np.dstack((gradXi, gradEta))
return N, basis
def getTriLagrangePts2D(p):
xi = np.linspace(0, 1, p+1)
eta = xi
N = (p+1)*(p+2)//2
Xi = np.zeros((N, 2))
idx = 0
for iy in range(p+1):
for ix in range(p-iy+1): # loop over nodes
Xi[idx] = np.array([xi[ix], eta[iy]])
idx += 1
return Xi
if __name__ == "__main__":
b = getTriLagrangeBasis2D(p=2)
print(getTriLagrangePts2D(p=2))
# print(b([1, 0]))
# print(b([0, 0]))
# print(b([0, 1]))
# print(b([0.5, 0.5]))
# print(b([0, 0.5]))
# print(b([0.5, 0]))