hexo/node_modules/bignumber.js/bignumber.d.ts

1296 lines
48 KiB
TypeScript

// Type definitions for Bignumber.js
// Project: bignumber.js
// Definitions by: Felix Becker https://github.com/felixfbecker
export interface Format {
/** the decimal separator */
decimalSeparator?: string;
/** the grouping separator of the integer part */
groupSeparator?: string;
/** the primary grouping size of the integer part */
groupSize?: number;
/** the secondary grouping size of the integer part */
secondaryGroupSize?: number;
/** the grouping separator of the fraction part */
fractionGroupSeparator?: string;
/** the grouping size of the fraction part */
fractionGroupSize?: number;
}
export interface Configuration {
/**
* integer, `0` to `1e+9` inclusive
*
* The maximum number of decimal places of the results of operations involving division, i.e. division, square root
* and base conversion operations, and power operations with negative exponents.
*
* ```ts
* BigNumber.config({ DECIMAL_PLACES: 5 })
* BigNumber.config(5) // equivalent
* ```
* @default 20
*/
DECIMAL_PLACES?: number;
/**
* The rounding mode used in the above operations and the default rounding mode of round, toExponential, toFixed,
* toFormat and toPrecision. The modes are available as enumerated properties of the BigNumber constructor.
* @default [[RoundingMode.ROUND_HALF_UP]]
*/
ROUNDING_MODE?: RoundingMode;
/**
* - `number`: integer, magnitude `0` to `1e+9` inclusive
* - `number[]`: [ integer `-1e+9` to `0` inclusive, integer `0` to `1e+9` inclusive ]
*
* The exponent value(s) at which `toString` returns exponential notation.
*
* If a single number is assigned, the value
* is the exponent magnitude.
*
* If an array of two numbers is assigned then the first number is the negative exponent
* value at and beneath which exponential notation is used, and the second number is the positive exponent value at
* and above which the same.
*
* For example, to emulate JavaScript numbers in terms of the exponent values at which
* they begin to use exponential notation, use [-7, 20].
*
* ```ts
* BigNumber.config({ EXPONENTIAL_AT: 2 })
* new BigNumber(12.3) // '12.3' e is only 1
* new BigNumber(123) // '1.23e+2'
* new BigNumber(0.123) // '0.123' e is only -1
* new BigNumber(0.0123) // '1.23e-2'
*
* BigNumber.config({ EXPONENTIAL_AT: [-7, 20] })
* new BigNumber(123456789) // '123456789' e is only 8
* new BigNumber(0.000000123) // '1.23e-7'
*
* // Almost never return exponential notation:
* BigNumber.config({ EXPONENTIAL_AT: 1e+9 })
*
* // Always return exponential notation:
* BigNumber.config({ EXPONENTIAL_AT: 0 })
* ```
* Regardless of the value of `EXPONENTIAL_AT`, the `toFixed` method will always return a value in normal notation
* and the `toExponential` method will always return a value in exponential form.
*
* Calling `toString` with a base argument, e.g. `toString(10)`, will also always return normal notation.
*
* @default `[-7, 20]`
*/
EXPONENTIAL_AT?: number | [number, number];
/**
* - number: integer, magnitude `1` to `1e+9` inclusive
* - number[]: [ integer `-1e+9` to `-1` inclusive, integer `1` to `1e+9` inclusive ]
*
* The exponent value(s) beyond which overflow to `Infinity` and underflow to zero occurs.
*
* If a single number is
* assigned, it is the maximum exponent magnitude: values wth a positive exponent of greater magnitude become
* Infinity and those with a negative exponent of greater magnitude become zero.
*
* If an array of two numbers is
* assigned then the first number is the negative exponent limit and the second number is the positive exponent
* limit.
*
* For example, to emulate JavaScript numbers in terms of the exponent values at which they become zero and
* Infinity, use [-324, 308].
*
* ```ts
* BigNumber.config({ RANGE: 500 })
* BigNumber.config().RANGE // [ -500, 500 ]
* new BigNumber('9.999e499') // '9.999e+499'
* new BigNumber('1e500') // 'Infinity'
* new BigNumber('1e-499') // '1e-499'
* new BigNumber('1e-500') // '0'
* BigNumber.config({ RANGE: [-3, 4] })
* new BigNumber(99999) // '99999' e is only 4
* new BigNumber(100000) // 'Infinity' e is 5
* new BigNumber(0.001) // '0.01' e is only -3
* new BigNumber(0.0001) // '0' e is -4
* ```
*
* The largest possible magnitude of a finite BigNumber is `9.999...e+1000000000`.
*
* The smallest possible magnitude of a non-zero BigNumber is `1e-1000000000`.
*
* @default `[-1e+9, 1e+9]`
*/
RANGE?: number | [number, number];
/**
*
* The value that determines whether BigNumber Errors are thrown. If ERRORS is false, no errors will be thrown.
* `true`, `false`, `0` or `1`.
* ```ts
* BigNumber.config({ ERRORS: false })
* ```
*
* @default `true`
*/
ERRORS?: boolean | number;
/**
* `true`, `false`, `0` or `1`.
*
* The value that determines whether cryptographically-secure pseudo-random number generation is used.
*
* If `CRYPTO` is set to `true` then the random method will generate random digits using `crypto.getRandomValues` in
* browsers that support it, or `crypto.randomBytes` if using a version of Node.js that supports it.
*
* If neither function is supported by the host environment then attempting to set `CRYPTO` to `true` will fail, and
* if [[Configuration.ERRORS]] is `true` an exception will be thrown.
*
* If `CRYPTO` is `false` then the source of randomness used will be `Math.random` (which is assumed to generate at
* least 30 bits of randomness).
*
* See [[BigNumber.random]].
*
* ```ts
* BigNumber.config({ CRYPTO: true })
* BigNumber.config().CRYPTO // true
* BigNumber.random() // 0.54340758610486147524
* ```
*
* @default `false`
*/
CRYPTO?: boolean | number;
/**
* The modulo mode used when calculating the modulus: `a mod n`.
*
* The quotient, `q = a / n`, is calculated according to
* the [[Configuration.ROUNDING_MODE]] that corresponds to the chosen MODULO_MODE.
*
* The remainder, r, is calculated as: `r = a - n * q`.
*
* The modes that are most commonly used for the modulus/remainder operation are shown in the following table.
* Although the other rounding modes can be used, they may not give useful results.
*
* Property | Value | Description
* -------------------|:-----:|---------------------------------------------------------------------------------------
* `ROUND_UP` | 0 | The remainder is positive if the dividend is negative, otherwise it is negative.
* `ROUND_DOWN` | 1 | The remainder has the same sign as the dividend. This uses 'truncating division' and matches the behaviour of JavaScript's remainder operator `%`.
* `ROUND_FLOOR` | 3 | The remainder has the same sign as the divisor.
* | | This matches Python's % operator.
* `ROUND_HALF_EVEN` | 6 | The IEEE 754 remainder function.
* `EUCLID` | 9 | The remainder is always positive. Euclidian division: `q = sign(n) * floor(a / abs(n))`
*
* The rounding/modulo modes are available as enumerated properties of the BigNumber constructor.
*
* See [[BigNumber.modulo]]
*
* ```ts
* BigNumber.config({ MODULO_MODE: BigNumber.EUCLID })
* BigNumber.config({ MODULO_MODE: 9 }) // equivalent
* ```
*
* @default [[RoundingMode.ROUND_DOWN]]
*/
MODULO_MODE?: RoundingMode;
/**
* integer, `0` to `1e+9` inclusive.
*
* The maximum number of significant digits of the result of the power operation (unless a modulus is specified).
*
* If set to 0, the number of signifcant digits will not be limited.
*
* See [[BigNumber.toPower]]
*
* ```ts
* BigNumber.config({ POW_PRECISION: 100 })
* ```
*
* @default 100
*/
POW_PRECISION?: number;
/**
* The FORMAT object configures the format of the string returned by the `toFormat` method. The example below shows
* the properties of the FORMAT object that are recognised, and their default values. Unlike the other configuration
* properties, the values of the properties of the FORMAT object will not be checked for validity. The existing
* FORMAT object will simply be replaced by the object that is passed in. Note that all the properties shown below
* do not have to be included.
*
* See `toFormat` for examples of usage.
*
* ```ts
* BigNumber.config({
* FORMAT: {
* // the decimal separator
* decimalSeparator: '.',
* // the grouping separator of the integer part
* groupSeparator: ',',
* // the primary grouping size of the integer part
* groupSize: 3,
* // the secondary grouping size of the integer part
* secondaryGroupSize: 0,
* // the grouping separator of the fraction part
* fractionGroupSeparator: ' ',
* // the grouping size of the fraction part
* fractionGroupSize: 0
* }
* });
* ```
*/
FORMAT?: Format;
}
/**
* The library's enumerated rounding modes are stored as properties of the constructor.
* (They are not referenced internally by the library itself.)
* Rounding modes 0 to 6 (inclusive) are the same as those of Java's BigDecimal class.
*/
declare enum RoundingMode {
/** Rounds away from zero */
ROUND_UP = 0,
/** Rounds towards zero */
ROUND_DOWN = 1,
/** Rounds towards Infinity */
ROUND_CEIL = 2,
/** Rounds towards -Infinity */
ROUND_FLOOR = 3,
/**
* Rounds towards nearest neighbour. If equidistant, rounds away from zero
*/
ROUND_HALF_UP = 4,
/**
* Rounds towards nearest neighbour. If equidistant, rounds towards zero
*/
ROUND_HALF_DOWN = 5,
/**
* Rounds towards nearest neighbour. If equidistant, rounds towards even neighbour
*/
ROUND_HALF_EVEN = 6,
/**
* Rounds towards nearest neighbour. If equidistant, rounds towards `Infinity`
*/
ROUND_HALF_CEIL = 7,
/**
* Rounds towards nearest neighbour. If equidistant, rounds towards `-Infinity`
*/
ROUND_HALF_FLOOR = 8,
/**
* The remainder is always positive. Euclidian division: `q = sign(n) * floor(a / abs(n))`
*/
EUCLID = 9
}
export class BigNumber {
/** Rounds away from zero */
static ROUND_UP: RoundingMode;
/** Rounds towards zero */
static ROUND_DOWN: RoundingMode;
/** Rounds towards Infinity */
static ROUND_CEIL: RoundingMode;
/** Rounds towards -Infinity */
static ROUND_FLOOR: RoundingMode;
/**
* Rounds towards nearest neighbour. If equidistant, rounds away from zero
*/
static ROUND_HALF_UP: RoundingMode;
/**
* Rounds towards nearest neighbour. If equidistant, rounds towards zero
*/
static ROUND_HALF_DOWN: RoundingMode;
/**
* Rounds towards nearest neighbour. If equidistant, rounds towards even neighbour
*/
static ROUND_HALF_EVEN: RoundingMode;
/**
* Rounds towards nearest neighbour. If equidistant, rounds towards `Infinity`
*/
static ROUND_HALF_CEIL: RoundingMode;
/**
* Rounds towards nearest neighbour. If equidistant, rounds towards `-Infinity`
*/
static ROUND_HALF_FLOOR: RoundingMode;
/**
* The remainder is always positive. Euclidian division: `q = sign(n) * floor(a / abs(n))`
*/
static EUCLID: RoundingMode;
/**
* Returns a new independent BigNumber constructor with configuration as described by `obj` (see `config`), or with
* the default configuration if `obj` is `null` or `undefined`.
*
* ```ts
* BigNumber.config({ DECIMAL_PLACES: 5 })
* BN = BigNumber.another({ DECIMAL_PLACES: 9 })
*
* x = new BigNumber(1)
* y = new BN(1)
*
* x.div(3) // 0.33333
* y.div(3) // 0.333333333
*
* // BN = BigNumber.another({ DECIMAL_PLACES: 9 }) is equivalent to:
* BN = BigNumber.another()
* BN.config({ DECIMAL_PLACES: 9 })
* ```
*/
static another(config?: Configuration): typeof BigNumber;
/**
* Configures the 'global' settings for this particular BigNumber constructor. Returns an object with the above
* properties and their current values. If the value to be assigned to any of the above properties is `null` or
* `undefined` it is ignored. See Errors for the treatment of invalid values.
*/
static config(config?: Configuration): Configuration;
/**
* Configures the 'global' settings for this particular BigNumber constructor. Returns an object with the above
* properties and their current values. If the value to be assigned to any of the above properties is `null` or
* `undefined` it is ignored. See Errors for the treatment of invalid values.
*/
static config(
decimalPlaces?: number,
roundingMode?: RoundingMode,
exponentialAt?: number | [number, number],
range?: number | [number, number],
errors?: boolean | number,
crypto?: boolean | number,
moduloMode?: RoundingMode,
powPrecision?: number,
format?: Format
): Configuration;
/**
* Returns a BigNumber whose value is the maximum of `arg1`, `arg2`,... . The argument to this method can also be an
* array of values. The return value is always exact and unrounded.
*
* ```ts
* x = new BigNumber('3257869345.0378653')
* BigNumber.max(4e9, x, '123456789.9') // '4000000000'
*
* arr = [12, '13', new BigNumber(14)]
* BigNumber.max(arr) // '14'
* ```
*/
static max(...args: Array<number | string | BigNumber>): BigNumber;
static max(args: Array<number | string | BigNumber>): BigNumber;
/**
* See BigNumber for further parameter details. Returns a BigNumber whose value is the minimum of arg1, arg2,... .
* The argument to this method can also be an array of values. The return value is always exact and unrounded.
*
* ```ts
* x = new BigNumber('3257869345.0378653')
* BigNumber.min(4e9, x, '123456789.9') // '123456789.9'
*
* arr = [2, new BigNumber(-14), '-15.9999', -12]
* BigNumber.min(arr) // '-15.9999'
* ```
*/
static min(...args: Array<number | string | BigNumber>): BigNumber;
static min(args: Array<number | string | BigNumber>): BigNumber;
/**
* Returns a new BigNumber with a pseudo-random value equal to or greater than 0 and less than 1.
*
* The return value
* will have dp decimal places (or less if trailing zeros are produced). If dp is omitted then the number of decimal
* places will default to the current `DECIMAL_PLACES` setting.
*
* Depending on the value of this BigNumber constructor's
* `CRYPTO` setting and the support for the crypto object in the host environment, the random digits of the return
* value are generated by either `Math.random` (fastest), `crypto.getRandomValues` (Web Cryptography API in recent
* browsers) or `crypto.randomBytes` (Node.js).
*
* If `CRYPTO` is true, i.e. one of the crypto methods is to be used, the
* value of a returned BigNumber should be cryptographically-secure and statistically indistinguishable from a
* random value.
*
* ```ts
* BigNumber.config({ DECIMAL_PLACES: 10 })
* BigNumber.random() // '0.4117936847'
* BigNumber.random(20) // '0.78193327636914089009'
* ```
*
* @param dp integer, `0` to `1e+9` inclusive
*/
static random(dp?: number): BigNumber;
/**
* Coefficient: Array of base `1e14` numbers or `null`
* @readonly
*/
c: number[];
/**
* Exponent: Integer, `-1000000000` to `1000000000` inclusive or `null`
* @readonly
*/
e: number;
/**
* Sign: `-1`, `1` or `null`
* @readonly
*/
s: number;
/**
* Returns a new instance of a BigNumber object. If a base is specified, the value is rounded according to the
* current [[Configuration.DECIMAL_PLACES]] and [[Configuration.ROUNDING_MODE]] configuration. See Errors for the treatment of an invalid value or base.
*
* ```ts
* x = new BigNumber(9) // '9'
* y = new BigNumber(x) // '9'
*
* // 'new' is optional if ERRORS is false
* BigNumber(435.345) // '435.345'
*
* new BigNumber('5032485723458348569331745.33434346346912144534543')
* new BigNumber('4.321e+4') // '43210'
* new BigNumber('-735.0918e-430') // '-7.350918e-428'
* new BigNumber(Infinity) // 'Infinity'
* new BigNumber(NaN) // 'NaN'
* new BigNumber('.5') // '0.5'
* new BigNumber('+2') // '2'
* new BigNumber(-10110100.1, 2) // '-180.5'
* new BigNumber(-0b10110100.1) // '-180.5'
* new BigNumber('123412421.234324', 5) // '607236.557696'
* new BigNumber('ff.8', 16) // '255.5'
* new BigNumber('0xff.8') // '255.5'
* ```
*
* The following throws `not a base 2 number` if [[Configuration.ERRORS]] is true, otherwise it returns a BigNumber with value `NaN`.
*
* ```ts
* new BigNumber(9, 2)
* ```
*
* The following throws `number type has more than 15 significant digits` if [[Configuration.ERRORS]] is true, otherwise it returns a BigNumber with value `96517860459076820`.
*
* ```ts
* new BigNumber(96517860459076817.4395)
* ```
*
* The following throws `not a number` if [[Configuration.ERRORS]] is true, otherwise it returns a BigNumber with value `NaN`.
*
* ```ts
* new BigNumber('blurgh')
* ```
*
* A value is only rounded by the constructor if a base is specified.
*
* ```ts
* BigNumber.config({ DECIMAL_PLACES: 5 })
* new BigNumber(1.23456789) // '1.23456789'
* new BigNumber(1.23456789, 10) // '1.23457'
* ```
*
* @param value A numeric value.
*
* Legitimate values include `±0`, `±Infinity` and `NaN`.
*
* Values of type `number` with more than 15 significant digits are considered invalid (if [[Configuration.ERRORS]]
* is `true`) as calling `toString` or `valueOf` on such numbers may not result in the intended value.
*
* There is no limit to the number of digits of a value of type `string` (other than that of JavaScript's maximum
* array size).
*
* Decimal string values may be in exponential, as well as normal (fixed-point) notation. Non-decimal values must be
* in normal notation. String values in hexadecimal literal form, e.g. `'0xff'`, are valid, as are string values
* with the octal and binary prefixs `'0o'` and `'0b'`.
*
* String values in octal literal form without the prefix will be interpreted as decimals, e.g. `'011'` is
* interpreted as 11, not 9.
*
* Values in any base may have fraction digits.
*
* For bases from 10 to 36, lower and/or upper case letters can be used to represent values from 10 to 35.
*
* For bases above 36, a-z represents values from 10 to 35, A-Z from 36 to 61, and $ and _ represent 62 and 63
* respectively (this can be changed by editing the ALPHABET variable near the top of the source file).
*
* @param base integer, 2 to 64 inclusive
*
* The base of value. If base is omitted, or is `null` or `undefined`, base 10 is assumed.
*/
constructor(value: number | string | BigNumber, base?: number);
/**
* Returns a BigNumber whose value is the absolute value, i.e. the magnitude, of the value of this BigNumber. The
* return value is always exact and unrounded.
* ```ts
* x = new BigNumber(-0.8)
* y = x.absoluteValue() // '0.8'
* z = y.abs() // '0.8'
* ```
* @alias [[BigNumber.abs]]
*/
absoluteValue(): BigNumber;
/**
* See [[BigNumber.absoluteValue]]
*/
abs(): BigNumber;
/**
* See [[plus]]
*/
add(n: number | string | BigNumber, base?: number): BigNumber;
/**
* Returns a BigNumber whose value is the value of this BigNumber rounded to a whole number in the direction of
* positive `Infinity`.
*
* ```ts
* x = new BigNumber(1.3)
* x.ceil() // '2'
* y = new BigNumber(-1.8)
* y.ceil() // '-1'
* ```
*/
ceil(): BigNumber;
/**
* Returns | |
* :-------:|---------------------------------------------------------------|
* 1 | If the value of this BigNumber is greater than the value of n
* -1 | If the value of this BigNumber is less than the value of n
* 0 | If this BigNumber and n have the same value
* null | If the value of either this BigNumber or n is NaN
*
* ```ts
* x = new BigNumber(Infinity)
* y = new BigNumber(5)
* x.comparedTo(y) // 1
* x.comparedTo(x.minus(1)) // 0
* y.cmp(NaN) // null
* y.cmp('110', 2) // -1
* ```
*
* @alias [[cmp]]
*/
comparedTo(n: number | string | BigNumber, base?: number): number;
/**
* See [[comparedTo]]
*/
cmp(n: number | string | BigNumber, base?: number): number;
/**
* Return the number of decimal places of the value of this BigNumber, or `null` if the value of this BigNumber is
* `±Infinity` or `NaN`.
*
* ```ts
* x = new BigNumber(123.45)
* x.decimalPlaces() // 2
* y = new BigNumber('9.9e-101')
* y.dp() // 102
* ```
*
* @alias [[dp]]
*/
decimalPlaces(): number;
/**
* See [[decimalPlaces]]
*/
dp(): number;
/**
* Returns a BigNumber whose value is the value of this BigNumber divided by n, rounded according to the current
* DECIMAL_PLACES and ROUNDING_MODE configuration.
*
* ```ts
* x = new BigNumber(355)
* y = new BigNumber(113)
* x.dividedBy(y) // '3.14159292035398230088'
* x.div(5) // '71'
* x.div(47, 16) // '5'
* ```
*
* @alias [[div]]
*/
dividedBy(n: number | string | BigNumber, base?: number): BigNumber;
/**
* See [[dividedBy]]
*/
div(n: number | string | BigNumber, base?: number): BigNumber;
/**
* Return a BigNumber whose value is the integer part of dividing the value of this BigNumber by n.
*
* ```ts
* x = new BigNumber(5)
* y = new BigNumber(3)
* x.dividedToIntegerBy(y) // '1'
* x.divToInt(0.7) // '7'
* x.divToInt('0.f', 16) // '5'
* ```
*
* @alias [[divToInt]]
*/
dividedToIntegerBy(n: number | string | BigNumber, base?: number): BigNumber;
/**
* See [[dividedToIntegerBy]]
*/
divToInt(n: number | string | BigNumber, base?: number): BigNumber;
/**
* Returns true if the value of this BigNumber equals the value of `n`, otherwise returns `false`. As with JavaScript,
* `NaN` does not equal `NaN`.
*
* Note: This method uses the [[comparedTo]] internally.
*
* ```ts
* 0 === 1e-324 // true
* x = new BigNumber(0)
* x.equals('1e-324') // false
* BigNumber(-0).eq(x) // true ( -0 === 0 )
* BigNumber(255).eq('ff', 16) // true
*
* y = new BigNumber(NaN)
* y.equals(NaN) // false
* ```
*
* @alias [[eq]]
*/
equals(n: number | string | BigNumber, base?: number): boolean;
/**
* See [[equals]]
*/
eq(n: number | string | BigNumber, base?: number): boolean;
/**
* Returns a BigNumber whose value is the value of this BigNumber rounded to a whole number in the direction of
* negative `Infinity`.
*
* ```ts
* x = new BigNumber(1.8)
* x.floor() // '1'
* y = new BigNumber(-1.3)
* y.floor() // '-2'
* ```
*/
floor(): BigNumber;
/**
* Returns `true` if the value of this BigNumber is greater than the value of `n`, otherwise returns `false`.
*
* Note: This method uses the comparedTo method internally.
*
* ```ts
* 0.1 > (0.3 - 0.2) // true
* x = new BigNumber(0.1)
* x.greaterThan(BigNumber(0.3).minus(0.2)) // false
* BigNumber(0).gt(x) // false
* BigNumber(11, 3).gt(11.1, 2) // true
* ```
*
* @alias [[gt]]
*/
greaterThan(n: number | string | BigNumber, base?: number): boolean;
/**
* See [[greaterThan]]
*/
gt(n: number | string | BigNumber, base?: number): boolean;
/**
* Returns `true` if the value of this BigNumber is greater than or equal to the value of `n`, otherwise returns `false`.
*
* Note: This method uses the comparedTo method internally.
*
* @alias [[gte]]
*/
greaterThanOrEqualTo(n: number | string | BigNumber, base?: number): boolean;
/**
* See [[greaterThanOrEqualTo]]
*/
gte(n: number | string | BigNumber, base?: number): boolean;
/**
* Returns true if the value of this BigNumber is a finite number, otherwise returns false. The only possible
* non-finite values of a BigNumber are `NaN`, `Infinity` and `-Infinity`.
*
* Note: The native method `isFinite()` can be used if `n <= Number.MAX_VALUE`.
*/
isFinite(): boolean;
/**
* Returns true if the value of this BigNumber is a whole number, otherwise returns false.
* @alias [[isInt]]
*/
isInteger(): boolean;
/**
* See [[isInteger]]
*/
isInt(): boolean;
/**
* Returns `true` if the value of this BigNumber is `NaN`, otherwise returns `false`.
*
* Note: The native method isNaN() can also be used.
*/
isNaN(): boolean;
/**
* Returns true if the value of this BigNumber is negative, otherwise returns false.
*
* Note: `n < 0` can be used if `n <= * -Number.MIN_VALUE`.
*
* @alias [[isNeg]]
*/
isNegative(): boolean;
/**
* See [[isNegative]]
*/
isNeg(): boolean;
/**
* Returns true if the value of this BigNumber is zero or minus zero, otherwise returns false.
*
* Note: `n == 0` can be used if `n >= Number.MIN_VALUE`.
*/
isZero(): boolean;
/**
* Returns true if the value of this BigNumber is less than the value of n, otherwise returns false.
*
* Note: This method uses [[comparedTo]] internally.
*
* @alias [[lt]]
*/
lessThan(n: number | string | BigNumber, base?: number): boolean;
/**
* See [[lessThan]]
*/
lt(n: number | string | BigNumber, base?: number): boolean;
/**
* Returns true if the value of this BigNumber is less than or equal the value of n, otherwise returns false.
*
* Note: This method uses [[comparedTo]] internally.
*/
lessThanOrEqualTo(n: number | string | BigNumber, base?: number): boolean;
/**
* See [[lessThanOrEqualTo]]
*/
lte(n: number | string | BigNumber, base?: number): boolean;
/**
* Returns a BigNumber whose value is the value of this BigNumber minus `n`.
*
* The return value is always exact and unrounded.
*
* @alias [[sub]]
*/
minus(n: number | string | BigNumber, base?: number): BigNumber;
/**
* Returns a BigNumber whose value is the value of this BigNumber modulo n, i.e. the integer remainder of dividing
* this BigNumber by n.
*
* The value returned, and in particular its sign, is dependent on the value of the [[Configuration.MODULO_MODE]]
* setting of this BigNumber constructor. If it is `1` (default value), the result will have the same sign as this
* BigNumber, and it will match that of Javascript's `%` operator (within the limits of double precision) and
* BigDecimal's remainder method.
*
* The return value is always exact and unrounded.
*
* ```ts
* 1 % 0.9 // 0.09999999999999998
* x = new BigNumber(1)
* x.modulo(0.9) // '0.1'
* y = new BigNumber(33)
* y.mod('a', 33) // '3'
* ```
*
* @alias [[mod]]
*/
modulo(n: number | string | BigNumber, base?: number): BigNumber;
/**
* See [[modulo]]
*/
mod(n: number | string | BigNumber, base?: number): BigNumber;
/**
* See [[times]]
*/
mul(n: number | string | BigNumber, base?: number): BigNumber;
/**
* Returns a BigNumber whose value is the value of this BigNumber negated, i.e. multiplied by -1.
*
* ```ts
* x = new BigNumber(1.8)
* x.negated() // '-1.8'
* y = new BigNumber(-1.3)
* y.neg() // '1.3'
* ```
*
* @alias [[neg]]
*/
negated(): BigNumber;
/**
* See [[negated]]
*/
neg(): BigNumber;
/**
* Returns a BigNumber whose value is the value of this BigNumber plus `n`.
*
* The return value is always exact and unrounded.
*
* @alias [[add]]
*/
plus(n: number | string | BigNumber, base?: number): BigNumber;
/**
* If z is true or 1 then any trailing zeros of the integer part of a number are counted as significant digits,
* otherwise they are not.
*
* @param z true, false, 0 or 1
* @alias [[sd]]
*/
precision(z?: boolean | number): number;
/**
* See [[precision]]
*/
sd(z?: boolean | number): number;
/**
* Returns a BigNumber whose value is the value of this BigNumber rounded by rounding mode rm to a maximum of dp
* decimal places.
*
* - if dp is omitted, or is null or undefined, the return value is n rounded to a whole number.
* - if rm is omitted, or is null or undefined, ROUNDING_MODE is used.
*
* ```ts
* x = 1234.56
* Math.round(x) // 1235
* y = new BigNumber(x)
* y.round() // '1235'
* y.round(1) // '1234.6'
* y.round(2) // '1234.56'
* y.round(10) // '1234.56'
* y.round(0, 1) // '1234'
* y.round(0, 6) // '1235'
* y.round(1, 1) // '1234.5'
* y.round(1, BigNumber.ROUND_HALF_EVEN) // '1234.6'
* y // '1234.56'
* ```
*
* @param dp integer, 0 to 1e+9 inclusive
* @param rm integer, 0 to 8 inclusive
*/
round(dp?: number, rm?: number): BigNumber;
/**
* Returns a BigNumber whose value is the value of this BigNumber shifted n places.
*
* The shift is of the decimal point, i.e. of powers of ten, and is to the left if n is negative or to the right if
* n is positive. The return value is always exact and unrounded.
*
* @param n integer, -9007199254740991 to 9007199254740991 inclusive
*/
shift(n: number): BigNumber;
/**
* Returns a BigNumber whose value is the square root of the value of this BigNumber, rounded according to the
* current DECIMAL_PLACES and ROUNDING_MODE configuration.
*
* The return value will be correctly rounded, i.e. rounded
* as if the result was first calculated to an infinite number of correct digits before rounding.
*
* @alias [[sqrt]]
*/
squareRoot(): BigNumber;
/**
* See [[squareRoot]]
*/
sqrt(): BigNumber;
/**
* See [[minus]]
*/
sub(n: number | string | BigNumber, base?: number): BigNumber;
/**
* Returns a BigNumber whose value is the value of this BigNumber times n.
*
* The return value is always exact and unrounded.
*
* @alias [[mul]]
*/
times(n: number | string | BigNumber, base?: number): BigNumber;
/**
* Returns a BigNumber whose value is the value of this BigNumber rounded to sd significant digits using rounding mode rm.
*
* If sd is omitted or is null or undefined, the return value will not be rounded.
*
* If rm is omitted or is null or undefined, ROUNDING_MODE will be used.
*
* ```ts
* BigNumber.config({ precision: 5, rounding: 4 })
* x = new BigNumber(9876.54321)
*
* x.toDigits() // '9876.5'
* x.toDigits(6) // '9876.54'
* x.toDigits(6, BigNumber.ROUND_UP) // '9876.55'
* x.toDigits(2) // '9900'
* x.toDigits(2, 1) // '9800'
* x // '9876.54321'
* ```
*
* @param sd integer, 1 to 1e+9 inclusive
* @param rm integer, 0 to 8 inclusive
*/
toDigits(sd?: number, rm?: number): BigNumber;
/**
* Returns a string representing the value of this BigNumber in exponential notation rounded using rounding mode rm
* to dp decimal places, i.e with one digit before the decimal point and dp digits after it.
*
* If the value of this BigNumber in exponential notation has fewer than dp fraction digits, the return value will
* be appended with zeros accordingly.
*
* If dp is omitted, or is null or undefined, the number of digits after the decimal point defaults to the minimum
* number of digits necessary to represent the value exactly.
*
* If rm is omitted or is null or undefined, ROUNDING_MODE is used.
*
* ```ts
* x = 45.6
* y = new BigNumber(x)
* x.toExponential() // '4.56e+1'
* y.toExponential() // '4.56e+1'
* x.toExponential(0) // '5e+1'
* y.toExponential(0) // '5e+1'
* x.toExponential(1) // '4.6e+1'
* y.toExponential(1) // '4.6e+1'
* y.toExponential(1, 1) // '4.5e+1' (ROUND_DOWN)
* x.toExponential(3) // '4.560e+1'
* y.toExponential(3) // '4.560e+1'
* ```
*
* @param dp integer, 0 to 1e+9 inclusive
* @param rm integer, 0 to 8 inclusive
*/
toExponential(dp?: number, rm?: number): string;
/**
* Returns a string representing the value of this BigNumber in normal (fixed-point) notation rounded to dp decimal
* places using rounding mode `rm`.
*
* If the value of this BigNumber in normal notation has fewer than `dp` fraction digits, the return value will be
* appended with zeros accordingly.
*
* Unlike `Number.prototype.toFixed`, which returns exponential notation if a number is greater or equal to 10<sup>21</sup>, this
* method will always return normal notation.
*
* If dp is omitted or is `null` or `undefined`, the return value will be unrounded and in normal notation. This is also
* unlike `Number.prototype.toFixed`, which returns the value to zero decimal places.
*
* It is useful when fixed-point notation is required and the current `EXPONENTIAL_AT` setting causes toString to
* return exponential notation.
*
* If `rm` is omitted or is `null` or `undefined`, `ROUNDING_MODE` is used.
*
* ```ts
* x = 3.456
* y = new BigNumber(x)
* x.toFixed() // '3'
* y.toFixed() // '3.456'
* y.toFixed(0) // '3'
* x.toFixed(2) // '3.46'
* y.toFixed(2) // '3.46'
* y.toFixed(2, 1) // '3.45' (ROUND_DOWN)
* x.toFixed(5) // '3.45600'
* y.toFixed(5) // '3.45600'
* ```
*
* @param dp integer, 0 to 1e+9 inclusive
* @param rm integer, 0 to 8 inclusive
*/
toFixed(dp?: number, rm?: number): string;
/**
* Returns a string representing the value of this BigNumber in normal (fixed-point) notation rounded to dp decimal
* places using rounding mode `rm`, and formatted according to the properties of the FORMAT object.
*
* See the examples below for the properties of the `FORMAT` object, their types and their usage.
*
* If `dp` is omitted or is `null` or `undefined`, then the return value is not rounded to a fixed number of decimal
* places.
*
* If `rm` is omitted or is `null` or `undefined`, `ROUNDING_MODE` is used.
*
* ```ts
* format = {
* decimalSeparator: '.',
* groupSeparator: ',',
* groupSize: 3,
* secondaryGroupSize: 0,
* fractionGroupSeparator: ' ',
* fractionGroupSize: 0
* }
* BigNumber.config({ FORMAT: format })
*
* x = new BigNumber('123456789.123456789')
* x.toFormat() // '123,456,789.123456789'
* x.toFormat(1) // '123,456,789.1'
*
* // If a reference to the object assigned to FORMAT has been retained,
* // the format properties can be changed directly
* format.groupSeparator = ' '
* format.fractionGroupSize = 5
* x.toFormat() // '123 456 789.12345 6789'
*
* BigNumber.config({
* FORMAT: {
* decimalSeparator = ',',
* groupSeparator = '.',
* groupSize = 3,
* secondaryGroupSize = 2
* }
* })
*
* x.toFormat(6) // '12.34.56.789,123'
* ```
*
* @param dp integer, 0 to 1e+9 inclusive
* @param rm integer, 0 to 8 inclusive
*/
toFormat(dp?: number, rm?: number): string;
/**
* Returns a string array representing the value of this BigNumber as a simple fraction with an integer numerator
* and an integer denominator. The denominator will be a positive non-zero value less than or equal to max.
*
* If a maximum denominator, max, is not specified, or is null or undefined, the denominator will be the lowest
* value necessary to represent the number exactly.
*
* ```ts
* x = new BigNumber(1.75)
* x.toFraction() // '7, 4'
*
* pi = new BigNumber('3.14159265358')
* pi.toFraction() // '157079632679,50000000000'
* pi.toFraction(100000) // '312689, 99532'
* pi.toFraction(10000) // '355, 113'
* pi.toFraction(100) // '311, 99'
* pi.toFraction(10) // '22, 7'
* pi.toFraction(1) // '3, 1'
* ```
*
* @param max integer >= `1` and < `Infinity`
*/
toFraction(max?: number | string | BigNumber): [string, string];
/**
* Same as [[valueOf]]
*
* ```ts
* x = new BigNumber('177.7e+457')
* y = new BigNumber(235.4325)
* z = new BigNumber('0.0098074')
*
* // Serialize an array of three BigNumbers
* str = JSON.stringify( [x, y, z] )
* // "["1.777e+459","235.4325","0.0098074"]"
*
* // Return an array of three BigNumbers
* JSON.parse(str, function (key, val) {
* return key === '' ? val : new BigNumber(val)
* })
* ```
*/
toJSON(): string;
/**
* Returns the value of this BigNumber as a JavaScript number primitive.
*
* Type coercion with, for example, the unary plus operator will also work, except that a BigNumber with the value
* minus zero will be converted to positive zero.
*
* ```ts
* x = new BigNumber(456.789)
* x.toNumber() // 456.789
* +x // 456.789
*
* y = new BigNumber('45987349857634085409857349856430985')
* y.toNumber() // 4.598734985763409e+34
*
* z = new BigNumber(-0)
* 1 / +z // Infinity
* 1 / z.toNumber() // -Infinity
* ```
*/
toNumber(): number;
/**
* Returns a BigNumber whose value is the value of this BigNumber raised to the power `n`, and optionally modulo `a`
* modulus `m`.
*
* If `n` is negative the result is rounded according to the current [[Configuration.DECIMAL_PLACES]] and
* [[Configuration.ROUNDING_MODE]] configuration.
*
* If `n` is not an integer or is out of range:
* - If `ERRORS` is `true` a BigNumber Error is thrown,
* - else if `n` is greater than `9007199254740991`, it is interpreted as `Infinity`;
* - else if n is less than `-9007199254740991`, it is interpreted as `-Infinity`;
* - else if `n` is otherwise a number, it is truncated to an integer;
* - else it is interpreted as `NaN`.
*
* As the number of digits of the result of the power operation can grow so large so quickly, e.g.
* 123.456<sup>10000</sup> has over 50000 digits, the number of significant digits calculated is limited to the
* value of the [[Configuration.POW_PRECISION]] setting (default value: `100`) unless a modulus `m` is specified.
*
* Set [[Configuration.POW_PRECISION]] to `0` for an unlimited number of significant digits to be calculated (this
* will cause the method to slow dramatically for larger exponents).
*
* Negative exponents will be calculated to the number of decimal places specified by
* [[Configuration.DECIMAL_PLACES]] (but not to more than [[Configuration.POW_PRECISION]] significant digits).
*
* If `m` is specified and the value of `m`, `n` and this BigNumber are positive integers, then a fast modular
* exponentiation algorithm is used, otherwise if any of the values is not a positive integer the operation will
* simply be performed as `x.toPower(n).modulo(m)` with a `POW_PRECISION` of `0`.
*
* ```ts
* Math.pow(0.7, 2) // 0.48999999999999994
* x = new BigNumber(0.7)
* x.toPower(2) // '0.49'
* BigNumber(3).pow(-2) // '0.11111111111111111111'
* ```
*
* @param n integer, -9007199254740991 to 9007199254740991 inclusive
* @alias [[pow]]
*/
toPower(n: number, m?: number | string | BigNumber): BigNumber;
/**
* See [[toPower]]
*/
pow(n: number, m?: number | string | BigNumber): BigNumber;
/**
* Returns a string representing the value of this BigNumber rounded to `sd` significant digits using rounding mode
* rm.
*
* - If `sd` is less than the number of digits necessary to represent the integer part of the value in normal
* (fixed-point) notation, then exponential notation is used.
* - If `sd` is omitted, or is `null` or `undefined`, then the return value is the same as `n.toString()`.
* - If `rm` is omitted or is `null` or `undefined`, `ROUNDING_MODE` is used.
*
* ```ts
* x = 45.6
* y = new BigNumber(x)
* x.toPrecision() // '45.6'
* y.toPrecision() // '45.6'
* x.toPrecision(1) // '5e+1'
* y.toPrecision(1) // '5e+1'
* y.toPrecision(2, 0) // '4.6e+1' (ROUND_UP)
* y.toPrecision(2, 1) // '4.5e+1' (ROUND_DOWN)
* x.toPrecision(5) // '45.600'
* y.toPrecision(5) // '45.600'
* ```
*
* @param sd integer, 1 to 1e+9 inclusive
* @param rm integer, 0 to 8 inclusive
*/
toPrecision(sd?: number, rm?: number): string;
/**
* Returns a string representing the value of this BigNumber in the specified base, or base 10 if base is omitted or
* is `null` or `undefined`.
*
* For bases above 10, values from 10 to 35 are represented by a-z (as with `Number.prototype.toString`), 36 to 61 by
* A-Z, and 62 and 63 by `$` and `_` respectively.
*
* If a base is specified the value is rounded according to the current `DECIMAL_PLACES` and `ROUNDING_MODE`
* configuration.
*
* If a base is not specified, and this BigNumber has a positive exponent that is equal to or greater than the
* positive component of the current `EXPONENTIAL_AT` setting, or a negative exponent equal to or less than the
* negative component of the setting, then exponential notation is returned.
*
* If base is `null` or `undefined` it is ignored.
*
* ```ts
* x = new BigNumber(750000)
* x.toString() // '750000'
* BigNumber.config({ EXPONENTIAL_AT: 5 })
* x.toString() // '7.5e+5'
*
* y = new BigNumber(362.875)
* y.toString(2) // '101101010.111'
* y.toString(9) // '442.77777777777777777778'
* y.toString(32) // 'ba.s'
*
* BigNumber.config({ DECIMAL_PLACES: 4 });
* z = new BigNumber('1.23456789')
* z.toString() // '1.23456789'
* z.toString(10) // '1.2346'
* ```
*
* @param base integer, 2 to 64 inclusive
*/
toString(base?: number): string;
/**
* Returns a BigNumber whose value is the value of this BigNumber truncated to a whole number.
*
* ```ts
* x = new BigNumber(123.456)
* x.truncated() // '123'
* y = new BigNumber(-12.3)
* y.trunc() // '-12'
* ```
*
* @alias [[trunc]]
*/
truncated(): BigNumber;
/**
* See [[truncated]]
*/
trunc(): BigNumber;
/**
* As [[toString]], but does not accept a base argument and includes the minus sign for negative zero.`
*
* ```ts
* x = new BigNumber('-0')
* x.toString() // '0'
* x.valueOf() // '-0'
* y = new BigNumber('1.777e+457')
* y.valueOf() // '1.777e+457'
* ```
*/
valueOf(): string;
}
export default BigNumber;