Skip to content

Latest commit

 

History

History
63 lines (43 loc) · 2.2 KB

README.md

File metadata and controls

63 lines (43 loc) · 2.2 KB

Machine Learning Algorithms

This repository implements some Classical machine learning algorithms in Python (with NumPy and SciPy).

Comments and discussion are always highly appreciated :)

Algorithms implemented:

Supervised Learning

  • k-NN
  • Perceptron
  • Classification Decision Tree (ID3/C4.5)
  • Classification Tree (CART Algorithm)
  • Regression Tree (CART Algorithm)
  • Support Vector Machine (SMO Algorithm)
  • Feedforward Neural Network (MLP)

Unsupervised Learning

  • KMeans Clustering
  • Gaussian Mixture Model Clustering (by EM algorithms/Gibbs Sampling/Variational Inference)(More methods can be found in this repository)
  • Hierarchical Clustering (implementing multiple distances: Euclidean/Minkowski/Manhattan/Chebyshev/Manhalanobis/Correlation/Cosine)
  • Principle Component Analysis
  • Kernel PCA
  • Factor Analysis(Linear Gaussian Model with anisotropic variances)
  • Probabilistic PCA(Number of PCs are automatically determined by ARD prior)
  • PPCA by Pyro(Illustrated in Jupyter Notebook)


机器学习算法

该仓库实现了一些经典的机器学习算法, 欢迎讨论和批评指正!

算法清单:

监督学习

  • k近邻
  • 感知机
  • 分类决策树(ID3/C4.5)
  • 分类树(CART算法)
  • 回归树(CART算法)
  • 支持向量机(SMO算法)
  • 前馈神经网络(MLP)

无监督学习

  • K均值聚类
  • 高斯混合模型聚类(利用EM算法/Gibbs采样/变分推断)(更多方法见此仓库)
  • 层次聚类(实现多种距离:欧氏距离/闵可夫斯基距离/曼哈顿距离/切比雪夫距离/马哈拉诺比斯距离/相关系数相似度/余弦相似度)
  • 主成分分析
  • 核主成分分析
  • 因子分析(各向异性方差线性高斯模型)
  • 概率主成分分析(利用ARD先验自动确定主成分数量)
  • Pyro实现的概率主成分分析(Jupyter Notebook)