From 39467023cd6c95957abfb9ae0a34dee490b8bed7 Mon Sep 17 00:00:00 2001 From: Julien Hillairet Date: Thu, 21 Sep 2017 00:07:27 +0200 Subject: [PATCH] Kramers-Kronig relations --- RF_Fundamentals.tex | 132 ++++++++++++++---- plasmaheatingandcurrentdrivetechnology.kilepr | 16 +-- 2 files changed, 114 insertions(+), 34 deletions(-) diff --git a/RF_Fundamentals.tex b/RF_Fundamentals.tex index a5111df..b087644 100644 --- a/RF_Fundamentals.tex +++ b/RF_Fundamentals.tex @@ -328,7 +328,7 @@ \subsubsection{Finite bandwidth solutions} % ####################################### -\subsection{$k-\omega$ Fields Representation}\label{sec:spectralRepresentation} +\subsubsection{$k-\omega$ Fields Representation}\label{sec:spectralRepresentation} Let us generalise to the case where the field solution is represented by the summation of many plane (or evanescent) waves characterized by their wavevector $\mathbf{k}=(k_x, k_y, k_z)$. We construct a solution on the form: \begin{subequations} \begin{align} @@ -429,7 +429,7 @@ \subsection{$k-\omega$ Fields Representation}\label{sec:spectralRepresentation} % ########################################################################### % ########################################################################### -\subsection{Constitutive Relations} +\subsection{The Constitutive Relations} Fluxes densities ($\mathcal{D}$,$\mathcal{B}$) differ from field intensities ($\mathcal{E},\mathcal{H}$) inside the material with regards to relative magnitude and direction. Flux densities can be interpreted as a response of the medium to an applied excitation\footnote{If we recall the Gauss law $ Q = \oint \boldsymbol{\mathcal{D}} \cdot \diff S$, the flux $\boldsymbol{\mathcal{D}}$ depends on the charge inside the closed surface and doesn't depend on the material itself, but the field intensity does. } . Such, the constitutive relationships can be written generally as: \begin{subequations} @@ -534,7 +534,7 @@ \subsubsection{Nonlocal medium} \end{subequations} The restriction of time integration to times $t'