-
Notifications
You must be signed in to change notification settings - Fork 18
/
town.py
867 lines (760 loc) · 36.3 KB
/
town.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
import random
from business import *
from residence import *
from occupation import *
import pyqtree
from random import gauss,randrange
from corpora import Names
from config import Config
import heapq
class Town(object):
"""A procedurally generated American small town on a 9x9 grid of city blocks.
Most of the code for this class was written by Adam Summerville.
"""
def __init__(self, sim):
"""Initialize a Town object."""
self.sim = sim
self.founded = sim.year
self.settlers = set() # Will get added to during Simulation.establish_setting()
self.residents = set()
self.departed = set() # People who left the town (i.e., left the simulation)
self.deceased = set() # People who died in in the town
self.companies = set()
self.former_companies = set()
self.lots = set()
self.tracts = set()
self.dwelling_places = set() # Both houses and apartment units (not complexes)
self.former_dwelling_places = set()
self.streets = set()
self.parcels = set()
self.blocks = set()
self.generate_lots(sim.config)
for lot in self.lots | self.tracts:
lot.set_neighboring_lots_for_town_generation()
lot.init_generate_address()
# Survey all town lots to instantiate conventional city blocks
for lot in self.lots | self.tracts:
number, street = lot.parcel_address_is_on.number, lot.parcel_address_is_on.street
try:
city_block = next(b for b in self.blocks if b.number == number and b.street is street)
city_block.lots.append(lot)
lot.block = city_block
except StopIteration:
city_block = Block(number=number, street=street)
self.blocks.add(city_block)
city_block.lots.append(lot)
lot.block = city_block
for block in self.blocks:
block.lots.sort(key=lambda lot: lot.house_number)
# Fill in any missing blocks, which I think gets caused by tracts being so large
# in some cases; these blocks will not have any lots on them, so they'll never
# have buildings on them, but it makes town navigation more natural during simplay
for street in self.streets:
street.blocks.sort(key=lambda block: block.number)
current_block_number = min(street.blocks, key=lambda block: block.number).number
largest_block_number = max(street.blocks, key=lambda block: block.number).number
while current_block_number != largest_block_number:
current_block_number += 100
if not any(b for b in street.blocks if b.number == current_block_number):
self.blocks.add(Block(number=current_block_number, street=street))
# Sort one last time to facilitate easy navigation during simplay
street.blocks.sort(key=lambda block: block.number)
self.paths = {}
self.generatePaths()
# Determine coordinates for each lot in the town, which are critical for
# graphically displaying the town
self._determine_lot_coordinates()
# Determine the lot central to the highest density of lots in the town and
# make this lot downtown
self.downtown = None
highest_density = -1
for lot in self.lots:
density = self.tertiary_density(lot)
if density > highest_density:
highest_density = density
self.downtown = lot
self.name = None # Gets set by Simulation.establish_setting() so that it may be named after an early settler
# Finally, reset the neighboring lots to all lots to be the other
# lots on the same city block
for lot in self.lots:
lot.init_set_neighbors_lots_as_other_lots_on_same_city_block()
# These get set when these businesses get established (by their __init__() magic methods)
self.cemetery = None
self.city_hall = None
self.fire_station = None
self.hospital = None
self.police_station = None
self.school = None
self.university = None
def __str__(self):
"""Return the town's name and population."""
return "{} (pop. {})".format(self.name, self.population)
def get_parcels(self):
output_parcels = {}
for parcel in self.parcels:
neighbors = []
for neighbor in parcel.neighbors:
neighbors.append(neighbor.id)
lots = []
for lot in parcel.lots:
lots.append(lot.id)
output_parcels[parcel.id] = {
"street": parcel.street.id,
"number": parcel.number,
"coords": parcel.coords,
"lots": lots,
"neighbors": neighbors
}
return output_parcels
def get_lots(self):
output_lots = {}
for lot in self.lots | self.tracts:
building_id = -1
if lot.building is not None:
building_id = lot.building.id
parcel_ids = []
for parcel in lot.parcels:
parcel_ids.append(parcel.id)
output_lots[lot.id] = {
"index_of_street_address_will_be_on": lot.index_of_street_address_will_be_on,
"building": building_id,
"blocks": parcel_ids,
"house_numbers": lot.house_numbers,
"positionsInBlock": lot.positions_in_city_blocks,
"sidesOfStreet": lot.sides_of_street
}
return output_lots
def getHouses(self):
output = {}
for house in self.houses:
people_here_now = set([p.id for p in house.people_here_now])
output[house.id] = {"address":house.address,"lot":house.lot.id, "people_here_now":people_here_now}
return output
def getApartments(self):
output = {}
for apartment in self.apartment_complexes:
people_here_now = set([p.id for p in apartment.people_here_now])
for unit in apartment.units:
people_here_now |= set([q.id for q in unit.people_here_now])
output[apartment.id] = {"address":apartment.name,"lot":apartment.lot.id, "people_here_now":people_here_now}
return output
def getBusinesses(self):
output = {}
for business in self.other_businesses:
people_here_now = set([p.id for p in business.people_here_now])
output[business.id] = {"address":business.name,"lot":business.lot.id, "people_here_now":people_here_now}
return output
def get_streets(self):
output = {}
for street in self.streets:
output[street.id] = {
"number": street.number,
"name": street.name,
"startingBlock": street.starting_parcel,
"endingBlock": street.ending_parcel,
"direction": street.direction
}
return output
def dist_from_downtown(self,lot):
return self.distance_between(lot,self.downtown)
def generatePaths(self):
for start in self.parcels:
for goal in self.parcels:
if (start == goal):
self.paths[(start,goal)] = 0
else :
if ((start,goal) not in self.paths):
came_from, cost_so_far = Town.a_star_search(start, goal)
current = goal
count = 0
while (current != start):
current = came_from[current]
count += 1
self.paths[(start,goal)] =count
self.paths[(goal,start)] =count
def distance_between(self, lot1, lot2):
min_dist = float("inf")
for parcel in lot1.parcels:
for other_parcel in lot2.parcels:
if self.paths[(parcel, other_parcel)] < min_dist:
min_dist = self.paths[(parcel, other_parcel)]
return min_dist
def nearest_business_of_type(self, lot, business_type):
"""Return the Manhattan distance between this lot and the nearest company of the given type.
@param business_type: The Class representing the type of company in question.
"""
businesses_of_this_type = self.businesses_of_type(business_type)
if businesses_of_this_type:
return min(businesses_of_this_type, key=lambda b: self.distance_between(lot, b.lot))
else:
return None
def dist_to_nearest_business_of_type(self, lot, business_type, exclusion):
"""Return the Manhattan distance between this lot and the nearest company of the given type.
@param business_type: The Class representing the type of company in question.
@param exclusion: A company who is being excluded from this determination because they
are the ones making the call to this method, as they try to decide where
to put their lot.
"""
distances = [
self.distance_between(lot, company.lot) for company in self.companies if isinstance(company, business_type)
and company is not exclusion
]
if distances:
return max(99, min(distances)) # Elsewhere, a max of 99 is relied on
else:
return None
@staticmethod
def secondary_population(lot):
"""Return the total population of this lot and its neighbors."""
secondary_population = 0
for neighbor in {lot} | lot.neighboring_lots:
secondary_population += neighbor.population
return secondary_population
@staticmethod
def tertiary_population(lot):
lots_already_considered = set()
tertiary_population = 0
for neighbor in {lot} | lot.neighboring_lots:
if neighbor not in lots_already_considered:
lots_already_considered.add(neighbor)
tertiary_population += neighbor.population
for neighbor_to_that_lot in neighbor.neighboring_lots:
if neighbor_to_that_lot not in lots_already_considered:
lots_already_considered.add(neighbor_to_that_lot)
tertiary_population += neighbor.population
return tertiary_population
@staticmethod
def tertiary_density(lot):
lots_already_considered = set()
tertiary_density = 0
for neighbor in {lot} | lot.neighboring_lots:
if neighbor not in lots_already_considered:
lots_already_considered.add(neighbor)
tertiary_density += 1
for neighbor_to_that_lot in neighbor.neighboring_lots:
if neighbor_to_that_lot not in lots_already_considered:
lots_already_considered.add(neighbor_to_that_lot)
tertiary_density += 1
return tertiary_density
def generate_lots(self, config):
loci = 3
samples = 32
size = 16
lociLocations = []
for ii in range(loci):
lociLocations.append([gauss(size/2.0,size/6.0), gauss(size/2.0,size/6.0)])
tree = pyqtree.Index(bbox=[0,0,size,size])
for ii in range(samples):
center = lociLocations[randrange(len(lociLocations))]
point = [clamp(gauss(center[0],size/6.0),0,size-1),clamp(gauss(center[1],size/6.0),0,size-1)]
point.append(point[0]+1)
point.append(point[1]+1)
tree.insert(point,point)
nsstreets = {}
ewstreets = {}
parcels = []
lots = []
tracts =[]
nsEnd = []
ewEnd = []
streets = []
def traverseTree(node):
if (len(node.children)==0 and node.width != 1):
w =int( node.center[0]-node.width*0.5)
e =int( node.center[0]+node.width*0.5)
n =int( node.center[1]-node.width*0.5)
s =int( node.center[1]+node.width*0.5)
parcels.append((w,n,node.width))
nsstreets[ (w,n)] = (w,s)
nsstreets[ (e,n)] = (e,s)
ewstreets[ (w,n)] = (e,n)
ewstreets[ (w,s)] = (e,s)
for child in node.children:
traverseTree(child)
traverseTree(tree)
for ii in range(0,size+2,2):
for jj in range(0,size+2,2):
street = (ii,jj)
if street in nsstreets:
start = street
end = nsstreets[start]
while end in nsstreets:
end = nsstreets[end]
if (end not in nsEnd):
nsEnd.append(end)
streets.append(['ns',start, end])
if street in ewstreets:
start = street
end = ewstreets[start]
while end in ewstreets:
end = ewstreets[end]
if (end not in ewEnd):
ewEnd.append(end)
streets.append(['ew',start, end])
nsStreets = {}
ewStreets = {}
connections = {}
for street in streets:
number = int(street[1][0]/2 if street[0] == "ns" else street[1][1]/2)+1
direction = ""
starting_parcel = 0
ending_parcel = 0
if (street[0] == "ns"):
direction = ("N" if number < size/4 else "S")
starting_parcel = street[1][1]
ending_parcel = street[2][1]
if (street[0] == "ew"):
direction =( "E" if number < size/4 else "W")
starting_parcel = street[1][0]
ending_parcel = street[2][0]
starting_parcel = int(starting_parcel/2)+1
ending_parcel = int(ending_parcel/2)+1
reifiedStreet = (Street(self, number, direction, starting_parcel, ending_parcel))
self.streets.add(reifiedStreet)
for ii in range(starting_parcel, ending_parcel+1):
if (street[0] == "ns"):
nsStreets[(number,ii)] = reifiedStreet
else:
ewStreets[(ii,number)] = reifiedStreet
for ii in range(starting_parcel,ending_parcel):
coord = None
next = None
if (street[0] == "ns"):
coord = (number,ii)
next = (number,ii+1)
else:
coord = (ii,number)
next = (ii+1,number)
if (not coord in connections):
connections[coord] = set()
connections[coord].add(next)
if (not next in connections):
connections[next] = set()
connections[next].add(coord)
def insertInto(dict,key,value):
if (not key in dict):
dict[key] = []
dict[key].append(value)
def insertOnce(dict,key,value):
if (not key in dict):
dict[key] = value
lots = {}
Parcels = {}
Numberings = {}
n_buildings_per_parcel = 2
corners = set()
for parcel in parcels:
ew = int(parcel[0]/2)+1
ns = int(parcel[1]/2)+1
size_of_parcel = int(parcel[2]/2)
tract = None
if (size_of_parcel > 1):
tract = Tract(self, size=size_of_parcel)
self.tracts.add(tract)
for ii in range(0,size_of_parcel+1):
insertOnce(Parcels,(ew,ns+ii,'NS'),Parcel( nsStreets[(ew,ns)], (ii+ns)*100,(ew,ns+ii)))
insertOnce(Numberings,(ew,ns+ii,'E'),Parcel.determine_house_numbering( (ii+ns)*100,'E', config))
insertOnce(Parcels,(ew+ii,ns,'EW'),Parcel( ewStreets[(ew,ns)], (ii+ew)*100,(ew+ii,ns)))
insertOnce(Numberings,(ew+ii,ns,'N'),Parcel.determine_house_numbering( (ii+ew)*100,'N', config))
insertOnce(Parcels,(ew+size_of_parcel,ns+ii,'NS'),Parcel( nsStreets[(ew+size_of_parcel,ns)], (ii+ns)*100,(ew+size_of_parcel,ns+ii)))
insertOnce(Numberings,(ew+size_of_parcel,ns+ii,'W'),Parcel.determine_house_numbering( (ii+ns)*100,'W', config))
insertOnce(Parcels,(ew+ii,ns+size_of_parcel,'EW'),Parcel( ewStreets[(ew,ns+size_of_parcel)], (ii+ew)*100,(ew+ii,ns+size_of_parcel)))
insertOnce(Numberings,(ew+ii,ns+size_of_parcel,'S'),Parcel.determine_house_numbering( (ii+ew)*100,'S', config))
if (tract != None):
tract.add_parcel(Parcels[(ew,ns+ii,'NS')],Numberings[(ew,ns+ii,'E')][n_buildings_per_parcel],'E',0)
tract.add_parcel( Parcels[(ew+ii,ns,'EW')],Numberings[(ew+ii,ns,'N')][n_buildings_per_parcel] ,'N',0)
if (ew+size_of_parcel <= size/2):
tract.add_parcel(Parcels[(ew+size_of_parcel,ns+ii,'NS')],Numberings[(ew+size_of_parcel,ns+ii,'W')][n_buildings_per_parcel],'W',0)
if (ns+size_of_parcel <= size/2):
tract.add_parcel( Parcels[(ew+ii,ns+size_of_parcel,'EW')],Numberings[(ew+ii,ns+size_of_parcel,'S')][n_buildings_per_parcel],'S',0)
neCorner = Lot(self)
insertInto(lots,(ew,ns,'N'),(0,neCorner))
insertInto(lots,(ew,ns,'E'),(0,neCorner))
self.lots.add(neCorner)
corners.add((ew,ns,'EW',ew,ns,'NS'))
nwCorner = Lot(self)
if (ew+size_of_parcel <= size/2):
insertInto(lots,(ew+size_of_parcel-1,ns,'N'),(n_buildings_per_parcel-1,nwCorner))
insertInto(lots,(ew+size_of_parcel,ns,'W'),(0,nwCorner))
corners.add((ew+size_of_parcel-1,ns,'EW',ew+size_of_parcel,ns,'NS'))
self.lots.add(nwCorner)
seCorner = Lot(self)
insertInto(lots,(ew,ns+size_of_parcel,'S'),(0,seCorner))
if (ns+size_of_parcel <= size/2):
insertInto(lots,(ew,ns+size_of_parcel-1,'E'),(n_buildings_per_parcel-1,seCorner))
self.lots.add(seCorner)
corners.add((ew,ns+size_of_parcel,'EW',ew,ns+size_of_parcel-1,'NS'))
swCorner = Lot(self)
insertInto(lots,(ew+size_of_parcel-1,ns+size_of_parcel,'S'),(n_buildings_per_parcel-1,swCorner))
insertInto(lots,(ew+size_of_parcel,ns+size_of_parcel-1,'W'),(n_buildings_per_parcel-1,swCorner))
corners.add((ew+size_of_parcel-1,ns+size_of_parcel,'EW',ew+size_of_parcel,ns+size_of_parcel-1,'NS'))
self.lots.add(swCorner)
for ii in range(1,size_of_parcel*n_buildings_per_parcel-1):
parcel_n = int(ii/2)
lot = Lot(self)
self.lots.add(lot)
insertInto(lots,(ew,ns+parcel_n,'E'),(ii %n_buildings_per_parcel,lot))
lot = Lot(self)
self.lots.add(lot)
insertInto(lots,(ew+parcel_n,ns,'N'),(ii %n_buildings_per_parcel,lot))
lot = Lot(self)
self.lots.add(lot)
insertInto(lots,(ew+size_of_parcel,ns+parcel_n,'W'),(ii %n_buildings_per_parcel,lot))
lot = Lot(self)
self.lots.add(lot)
insertInto(lots,(ew+parcel_n,ns+size_of_parcel,'S'),(ii %n_buildings_per_parcel,lot))
for parcel in lots:
dir = 'NS' if parcel[2] == 'W' or parcel[2] == 'E' else 'EW'
parcel_object = Parcels[(parcel[0],parcel[1],dir)]
lotList = lots[parcel]
for lot in lotList:
lot[1].add_parcel(parcel_object,Numberings[parcel][lot[0]],parcel[2],lot[0])
parcel_object.lots.append(lot[1])
for conn in connections:
for neighbor in connections[conn]:
dx = neighbor[0] - conn[0]
dy = neighbor[1] - conn[1]
if dx != 0:
if (conn[0],conn[1],'EW') in Parcels and (neighbor[0],neighbor[1],'EW') in Parcels:
Parcels[(conn[0],conn[1],'EW')].add_neighbor(Parcels[(neighbor[0],neighbor[1],'EW')])
if dy != 0:
if (conn[0],conn[1],'NS') in Parcels and (neighbor[0],neighbor[1],'NS') in Parcels:
Parcels[(conn[0],conn[1],'NS')].add_neighbor(Parcels[(neighbor[0],neighbor[1],'NS')])
for corner in corners:
Parcels[(corner[0],corner[1],corner[2])].add_neighbor(Parcels[(corner[3],corner[4],corner[5])])
Parcels[(corner[3],corner[4],corner[5])].add_neighbor(Parcels[(corner[0],corner[1],corner[2])])
for parcel in Parcels:
self.parcels.add(Parcels[parcel])
# Currently being set to town founder by CityHall.__init__(); this is never updated or used
# later on, though
self.mayor = None
def _determine_lot_coordinates(self):
"""Determine coordinates for each lot in this town.
Coordinates are of the form (number_of_east_west_street, number_of_north_south_street),
but with the coordinate corresponding to the street that the lot's address is *not* on
being set to either that street's number plus 0.25 or plus 0.75, depending on the lot's
position on the city block (which can be inferred from its address).
"""
for lot in self.lots | self.tracts:
# Determine base x- and y-coordinates, which can be inferred from the
# number of the street that the lot's address is on and the lot's house
# number itself
if lot.street_address_is_on.direction in ('E', 'W'):
x_coordinate = int(lot.house_number/100.0)
y_coordinate = lot.street_address_is_on.number
else:
x_coordinate = lot.street_address_is_on.number
y_coordinate = int(lot.house_number/100.0)
# Figure out this lot's position in its city block
index_of_street_lot_address_is_on = lot.streets.index(lot.street_address_is_on)
position_in_city_block = lot.positions_in_city_blocks[index_of_street_lot_address_is_on]
# Convert this to an increase (on the axis matching the direction of the street
# that this lot's address is on) of either 0.25 or 0.75; we do this so that lots
# are spaced evenly
if lot.street_address_is_on.direction in ('E', 'W'):
x_coordinate = int(x_coordinate)+0.25 if position_in_city_block == 0 else int(x_coordinate)+0.75
elif lot.street_address_is_on.direction in ('N', 'S'):
y_coordinate = int(y_coordinate)+0.25 if position_in_city_block == 0 else int(y_coordinate)+0.75
# Figure out what side of the street this lot is on
index_of_street_lot_address_is_on = lot.streets.index(lot.street_address_is_on)
lot_side_of_street_on_the_street_its_address_is_on = lot.sides_of_street[index_of_street_lot_address_is_on]
# Update coordinates accordingly
if lot_side_of_street_on_the_street_its_address_is_on == 'N':
y_coordinate += 0.25
elif lot_side_of_street_on_the_street_its_address_is_on == 'S':
y_coordinate -= 0.25
elif lot_side_of_street_on_the_street_its_address_is_on == 'E':
x_coordinate += 0.25
elif lot_side_of_street_on_the_street_its_address_is_on == 'W':
x_coordinate -= 0.25
# Attribute these coordinates to the lot
lot.coordinates = (x_coordinate, y_coordinate)
@property
def pop(self):
"""Return the number of residents living in the town."""
return len(self.residents)
@property
def population(self):
"""Return the number of residents living in the town."""
return len(self.residents)
@property
def buildings(self):
"""Return all businesses and houses (not apartment units) in this town."""
houses = {d for d in self.dwelling_places if d.__class__ is House}
return houses | self.companies
@property
def vacant_lots(self):
"""Return all vacant lots in the town."""
vacant_lots = [lot for lot in self.lots if not lot.building]
return vacant_lots
@property
def vacant_tracts(self):
"""Return all vacant tracts in the town."""
vacant_tracts = [tract for tract in self.tracts if not tract.building]
return vacant_tracts
@property
def vacant_homes(self):
"""Return all vacant homes in the town."""
vacant_homes = [home for home in self.dwelling_places if not home.residents]
return vacant_homes
@property
def all_time_residents(self):
"""Return everyone who has at one time lived in the town."""
return self.residents | self.deceased | self.departed
@property
def unemployed(self):
"""Return unemployed (mostly young) people, excluding retirees."""
unemployed_people = set()
for resident in self.residents:
if not resident.occupation and not resident.retired:
if resident.in_the_workforce:
unemployed_people.add(resident)
return unemployed_people
def workers_of_trade(self, occupation):
"""Return all population in the town who practice to given occupation.
@param occupation: The class pertaining to the occupation in question.
"""
return [resident for resident in self.residents if isinstance(resident.occupation, occupation)]
def businesses_of_type(self, business_type):
"""Return all business in this town of the given type.
@param business_type: A string of the Class name representing the type of business in question.
"""
businesses_of_this_type = [
company for company in self.companies if company.__class__.__name__ == business_type
]
return businesses_of_this_type
@staticmethod
def heuristic(a, b):
(x1, y1) = a.coords
(x2, y2) = b.coords
return abs(x1 - x2) + abs(y1 - y2)
@staticmethod
def a_star_search(start, goal):
frontier = PriorityQueue()
frontier.put(start, 0)
came_from = {}
cost_so_far = {}
came_from[start] = None
cost_so_far[start] = 0
while not frontier.empty():
current = frontier.get()
if current == goal:
break
for next in current.neighbors:
new_cost = cost_so_far[current] + 1
if next not in cost_so_far or new_cost < cost_so_far[next]:
cost_so_far[next] = new_cost
priority = new_cost + Town.heuristic(goal, next)
frontier.put(next, priority)
came_from[next] = current
return came_from, cost_so_far
class Street(object):
"""A street in a town."""
counter = 0
def __init__(self, town, number, direction, starting_parcel, ending_parcel):
"""Initialize a Street object."""
self.id = Street.counter
Street.counter += 1
self.town = town
self.number = number
self.direction = direction # Direction relative to the center of the town
self.name = self.generate_name(number, direction)
self.starting_parcel = starting_parcel
self.ending_parcel = ending_parcel
self.blocks = [] # Gets appended to by Block.__init__()
def generate_name(self, number, direction):
"""Generate a street name."""
config = self.town.sim.config
number_to_ordinal = {
1: '1st', 2: '2nd', 3: '3rd', 4: '4th', 5: '5th',
6: '6th', 7: '7th', 8: '8th', 9: '9th'
}
if direction == 'E' or direction == 'W':
street_type = 'Street'
if random.random() < config.chance_street_gets_numbered_name:
name = number_to_ordinal[number]
else:
if random.random() < 0.5:
name = Names.any_surname()
else:
name = Names.a_place_name()
else:
street_type = 'Avenue'
if random.random() < config.chance_avenue_gets_numbered_name:
name = number_to_ordinal[number]
else:
if random.random() < 0.5:
name = Names.any_surname()
else:
name = Names.a_place_name()
# name = "{0} {1} {2}".format(name, street_type, direction)
name = "{0} {1}".format(name, street_type)
return name
def __str__(self):
"""Return string representation."""
return self.name
class Parcel(object):
"""A collection of between zero and four contiguous lots in a town."""
counter = 0
def __init__(self, street, number, coords):
"""Initialize a Parcel object."""
self.id = Parcel.counter
Parcel.counter += 1
self.street = street
self.number = number
self.lots = []
self.neighbors = []
self.coords = coords
@staticmethod
def determine_house_numbering(block_number, side_of_street, config):
"""Devise an appropriate house numbering scheme given the number of buildings on the block."""
n_buildings = 3
house_numbers = []
house_number_increment = int(100.0 / n_buildings)
even_or_odd = 0 if side_of_street == "E" or side_of_street == "N" else 1
for i in xrange(n_buildings):
base_house_number = (i * house_number_increment) - 1
house_number = base_house_number + int(random.random() * house_number_increment)
if house_number % 2 == (1-even_or_odd):
house_number += 1
if house_number < 1+even_or_odd:
house_number = 1+even_or_odd
elif house_number > 98+even_or_odd:
house_number = 98+even_or_odd
house_number += block_number
house_numbers.append(house_number)
return house_numbers
def add_neighbor(self, other):
self.neighbors.append(other)
class Block(object):
"""A city block in the conventional sense, e.g., the 400 block of Hennepin Ave."""
def __init__(self, number, street):
"""Initialize a block object."""
self.number = number
self.street = street
self.street.blocks.append(self)
self.lots = []
self.type = 'block'
# Helper attributes for rendering a town
if self.street.direction in ('N', 'S'):
self.starting_coordinates = (self.street.number, self.number/100)
self.ending_coordinates = (self.starting_coordinates[0], self.starting_coordinates[1]+1)
else:
self.starting_coordinates = (self.number/100, self.street.number)
self.ending_coordinates = (self.starting_coordinates[0]+1, self.starting_coordinates[1])
def __str__(self):
"""Return string representation."""
return "{} block of {}".format(self.number, str(self.street))
@property
def direction(self):
return 'n-s' if self.street.direction.lower() in ('n', 's') else 'e-w'
@property
def buildings(self):
"""Return all the buildings on this block."""
return [lot.building for lot in self.lots if lot.building]
class Lot(object):
"""A lot on a city block (and multiple parcels) in a town, upon which buildings and houses get erected."""
counter = 0
def __init__(self, town):
"""Initialize a Lot object."""
self.id = Lot.counter
Lot.counter += 1
self.lot = True if self.__class__ is Lot else False
self.tract = True if self.__class__ is Tract else False
self.town = town
self.streets = []
self.parcels = []
self.block = None
self.sides_of_street = []
self.house_numbers = [] # In the event a business is erected here, it inherits this
self.building = None
# Positions in city blocks correspond to streets this lot is on and elements of this list
# will be either 0 or 1, indicating whether this is the leftmost/topmost lot on its side
# of the street of its city block or else rightmost/bottommost
self.positions_in_city_blocks = []
# This one gets set by Town.set_neighboring_lots_for_town_generation() after all lots have
# been generated
self.neighboring_lots = set()
# This gets set by Town._determine_lot_coordinates()
self.coordinates = None
# These get set by init_generate_address(), which gets called by Town
self.house_number = None
self.address = None
self.street_address_is_on = None
self.parcel_address_is_on = None
self.index_of_street_address_will_be_on = None
self.former_buildings = []
def __str__(self):
"""Return string representation."""
if self.__class__ is Lot:
if self.building:
return 'A lot at {} on which {} has been erected'.format(
self.address, self.building.name
)
else:
return 'A vacant lot at {}'.format(self.address)
else: # Tract
if self.building:
return 'A tract of land at {} that is the site of {}'.format(
self.address, self.building.name
)
else:
return 'A vacant tract of land at {}'.format(self.address)
@property
def population(self):
"""Return the number of people living/working on the lot."""
if self.building:
population = len(self.building.residents)
else:
population = 0
return population
def add_parcel(self, parcel, number, side_of_street, position_in_parcel):
self.streets.append(parcel.street)
self.parcels.append(parcel)
self.sides_of_street.append(side_of_street)
self.house_numbers.append(number)
self.positions_in_city_blocks.append(position_in_parcel)
def set_neighboring_lots_for_town_generation(self):
neighboring_lots = set()
for parcel in self.parcels:
for lot in parcel.lots:
if lot is not self:
neighboring_lots.add(lot)
self.neighboring_lots = neighboring_lots
def init_generate_address(self):
"""Generate an address, given the lot building is on."""
self.index_of_street_address_will_be_on = random.randint(0, len(self.streets)-1)
house_number = self.house_numbers[self.index_of_street_address_will_be_on]
self.house_number = int(house_number)
street = self.streets[self.index_of_street_address_will_be_on]
self.address = "{} {}".format(house_number, street.name)
self.street_address_is_on = street
self.parcel_address_is_on = self.parcels[self.index_of_street_address_will_be_on]
def init_set_neighbors_lots_as_other_lots_on_same_city_block(self):
"""Set the neighbors to this lot as all the other lots on the same city block.
This makes for more intuitive simplay, since we're delimiting the player's
simplay to city blocks, so it would seem right that people reason about
other people in that same locality when asked about their neighbors.
"""
self.neighboring_lots = set(self.block.lots)
class Tract(Lot):
"""A tract of land on multiple parcels in a town, upon which businesses requiring
extensive land (e.g., parks and cemeteries) are established.
"""
def __init__(self, town, size):
"""Initialize a Tract object."""
self.size = size
super(Tract, self).__init__(town)
class PriorityQueue:
"""A helper class used when generating a town layout."""
def __init__(self):
"""Initialize a PriorityQueue object."""
self.elements = []
def empty(self):
return len(self.elements) == 0
def put(self, item, priority):
heapq.heappush(self.elements, (priority, item))
def get(self):
return heapq.heappop(self.elements)[1]
def clamp(val, minimum, maximum):
return max(minimum, min(val, maximum))