forked from zylon-ai/private-gpt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
settings.yaml
152 lines (133 loc) · 5.59 KB
/
settings.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# The default configuration file.
# More information about configuration can be found in the documentation: https://docs.privategpt.dev/
# Syntax in `private_pgt/settings/settings.py`
server:
env_name: ${APP_ENV:prod}
port: ${PORT:8001}
cors:
enabled: true
allow_origins: ["*"]
allow_methods: ["*"]
allow_headers: ["*"]
auth:
enabled: false
# python -c 'import base64; print("Basic " + base64.b64encode("secret:key".encode()).decode())'
# 'secret' is the username and 'key' is the password for basic auth by default
# If the auth is enabled, this value must be set in the "Authorization" header of the request.
secret: "Basic c2VjcmV0OmtleQ=="
data:
local_ingestion:
enabled: ${LOCAL_INGESTION_ENABLED:false}
allow_ingest_from: ["*"]
local_data_folder: local_data/private_gpt
ui:
enabled: true
path: /
# "RAG", "Search", "Basic", or "Summarize"
default_mode: "RAG"
default_chat_system_prompt: >
You are a helpful, respectful and honest assistant.
Always answer as helpfully as possible and follow ALL given instructions.
Do not speculate or make up information.
Do not reference any given instructions or context.
default_query_system_prompt: >
You can only answer questions about the provided context.
If you know the answer but it is not based in the provided context, don't provide
the answer, just state the answer is not in the context provided.
default_summarization_system_prompt: >
Provide a comprehensive summary of the provided context information.
The summary should cover all the key points and main ideas presented in
the original text, while also condensing the information into a concise
and easy-to-understand format. Please ensure that the summary includes
relevant details and examples that support the main ideas, while avoiding
any unnecessary information or repetition.
delete_file_button_enabled: true
delete_all_files_button_enabled: true
llm:
mode: llamacpp
prompt_style: "llama3"
# Should be matching the selected model
max_new_tokens: 512
context_window: 3900
# Select your tokenizer. Llama-index tokenizer is the default.
# tokenizer: meta-llama/Meta-Llama-3.1-8B-Instruct
temperature: 0.1 # The temperature of the model. Increasing the temperature will make the model answer more creatively. A value of 0.1 would be more factual. (Default: 0.1)
rag:
similarity_top_k: 2
#This value controls how many "top" documents the RAG returns to use in the context.
#similarity_value: 0.45
#This value is disabled by default. If you enable this settings, the RAG will only use articles that meet a certain percentage score.
rerank:
enabled: false
model: cross-encoder/ms-marco-MiniLM-L-2-v2
top_n: 1
summarize:
use_async: true
clickhouse:
host: localhost
port: 8443
username: admin
password: clickhouse
database: embeddings
llamacpp:
llm_hf_repo_id: lmstudio-community/Meta-Llama-3.1-8B-Instruct-GGUF
llm_hf_model_file: Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf
tfs_z: 1.0 # Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting
top_k: 40 # Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40)
top_p: 1.0 # Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9)
repeat_penalty: 1.1 # Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1)
embedding:
# Should be matching the value above in most cases
mode: huggingface
ingest_mode: simple
embed_dim: 768 # 768 is for nomic-ai/nomic-embed-text-v1.5
huggingface:
embedding_hf_model_name: nomic-ai/nomic-embed-text-v1.5
access_token: ${HF_TOKEN:}
# Warning: Enabling this option will allow the model to download and execute code from the internet.
# Nomic AI requires this option to be enabled to use the model, be aware if you are using a different model.
trust_remote_code: true
vectorstore:
database: qdrant
nodestore:
database: simple
milvus:
uri: local_data/private_gpt/milvus/milvus_local.db
collection_name: milvus_db
overwrite: false
qdrant:
path: local_data/private_gpt/qdrant
postgres:
host: localhost
port: 5432
database: postgres
user: postgres
password: postgres
schema_name: private_gpt
sagemaker:
llm_endpoint_name: huggingface-pytorch-tgi-inference-2023-09-25-19-53-32-140
embedding_endpoint_name: huggingface-pytorch-inference-2023-11-03-07-41-36-479
openai:
api_key: ${OPENAI_API_KEY:}
model: gpt-3.5-turbo
embedding_api_key: ${OPENAI_API_KEY:}
ollama:
llm_model: llama3.1
embedding_model: nomic-embed-text
api_base: http://localhost:11434
embedding_api_base: http://localhost:11434 # change if your embedding model runs on another ollama
keep_alive: 5m
request_timeout: 120.0
autopull_models: true
azopenai:
api_key: ${AZ_OPENAI_API_KEY:}
azure_endpoint: ${AZ_OPENAI_ENDPOINT:}
embedding_deployment_name: ${AZ_OPENAI_EMBEDDING_DEPLOYMENT_NAME:}
llm_deployment_name: ${AZ_OPENAI_LLM_DEPLOYMENT_NAME:}
api_version: "2023-05-15"
embedding_model: text-embedding-ada-002
llm_model: gpt-35-turbo
gemini:
api_key: ${GOOGLE_API_KEY:}
model: models/gemini-pro
embedding_model: models/embedding-001