Skip to content

Latest commit

 

History

History
80 lines (79 loc) · 1.92 KB

README.md

File metadata and controls

80 lines (79 loc) · 1.92 KB

salASR: Performing Legilimency using SALience on ASR models

This repository contains code for the project on extending common explainability approaches used in Deep Learning literature to the task of Automatic Speech Recognition. This project was done for the course CS 6966 Local Explanations for Deep Learning Models taught by Professor Ana Marasovic.

Contributors

Dataset

We use the librispeech_asr dataset for this project.

Data Format

{
    'chapter_id': int,
    'file': str,
    'audio': {
        'path': str,
        'array': array(float32),
        'sampling_rate': int
    },
    'id': str,
    'speaker_id': int,
    'text': str
}
        

Getting started

  • Clone the github repo:
    git clone https://github.com/jacobkj314/salASR
            
  • Install conda if you don't have it already
    wget https://repo.anaconda.com/miniconda/Miniconda3-py37_4.12.0-Linux-x86_64.sh
    bash Miniconda3-py37_4.12.0-Linux-x86_64.sh
            
  • Once you have installed conda, use it to create and set up the conda environment
    conda create -n salASR python=3.8
    conda activate salASR
    pip install -r requirements.txt
            
  • If you wish to finetune whisper, create and set up another conda environment
    conda create -n finetuneWhisperEnv python=3.9
    conda activate finetuneWhisperEnv
    pip install -r requirementsFinetuneWhisper.txt