-
Notifications
You must be signed in to change notification settings - Fork 67
/
attention.py
118 lines (101 loc) · 4.8 KB
/
attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
# MIT License
#
# Copyright (c) 2019 Jacky Ka Long, Ko
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import tensorflow as tf
def init_weight(shape):
w = tf.truncated_normal(shape= shape, mean=0, stddev =0.1)
return tf.Variable(w)
def init_bias(shape):
b = tf.zeros(shape)
return tf.Variable(b)
class AttentionModule(object):
"""
Attention model with residual block design
"""
def __init__(self,
num_classes,
num_channels=64,
is_training=True,
activation_fn="relu",
keep_prob=1.0):
"""
Implements Resnet3D in 3D
:param num_classes: Number of output classes.
:param num_classes: Number of feature channels.
:param is_training: Set network in training mode
:param activation_fn: The activation function.
:param keep_prob: Dropout keep probability, set to 1.0 if not training or if no dropout is desired.
"""
self.num_classes = num_classes
self.num_channels = num_channels
self.is_training = is_training
if (activation_fn == "relu"):
self.activation_fn = tf.nn.relu
else:
print("Invalid activation function")
exit()
self.keep_prob = keep_prob
self.train_phase = tf.placeholder(tf.bool,name="train_phase_placeholder")
def Conv3d_block(self, input_tensor, filterShape, strides = [1,1,1,1,1], is_training=True):
input_channels = int(input_tensor.get_shape()[-1])
conv_W = init_weight(filterShape)
conv_B = init_bias(filterShape[4])
conv = tf.nn.conv3d(input_tensor, conv_W, strides = strides, padding ='VALID') + conv_B
conv = tf.layers.batch_normalization(conv, momentum=0.99, epsilon=0.001,center=True, scale=True,training=is_training)
return conv
def ConvActivate3d_block(self, input_tensor, filterShape, strides = [1,1,1,1,1], is_training=True):
input_channels = int(input_tensor.get_shape()[-1])
conv_W = init_weight(filterShape)
conv_B = init_bias(filterShape[4])
conv = tf.nn.conv3d(input_tensor, conv_W, strides = strides, padding ='VALID') + conv_B
conv = tf.layers.batch_normalization(conv, momentum=0.99, epsilon=0.001,center=True, scale=True,training=is_training)
conv = self.activation_fn(conv)
conv = tf.nn.dropout(conv, self.keep_prob)
return conv
def residual_block(self, input_tensor, channels, output_activation=True,is_training=True):
paddings = tf.constant([[0, 0], [1, 1], [1, 1], [1, 1], [0, 0]])
input_tensor_padded = tf.pad(input_tensor, paddings, "CONSTANT")
input_channels = int(input_tensor.get_shape()[-1])
conv1Filter_shape = [3,3,3,input_channels,channels]
conv1 = self.ConvActivate3d_block(input_tensor_padded, conv1Filter_shape, is_training = is_training)
conv1 = tf.pad(conv1, paddings, "CONSTANT")
conv2Filter_shape = [3,3,3,channels,channels]
conv2 = self.Conv3d_block(conv1, conv2Filter_shape, is_training = is_training)
# residual branch
conv_up_W = init_weight([1,1,1,input_channels,channels])
conv_up_B = init_bias(channels)
input_tensor_up_conv = tf.nn.conv3d(input_tensor, conv_up_W, strides = [1,1,1,1,1], padding ='VALID') + conv_up_B
output = tf.add(conv2, input_tensor_up_conv)
output = tf.layers.batch_normalization(output, momentum=0.99, epsilon=0.001,center=True, scale=True,training=is_training)
if output_activation:
output = self.activation_fn(output)
output = tf.nn.dropout(output, self.keep_prob)
return output
def GetNetwork(self, input):
with tf.variable_scope('AttentionModule/encoder'):
layer1_resblock1 = self.residual_block(input, self.num_channels, True, self.train_phase)
layer1_resblock2 = self.residual_block(layer1_resblock1, self.num_channels, True, self.train_phase)
layer1_resblock3 = self.residual_block(layer1_resblock2, self.num_channels, True, self.train_phase)
with tf.variable_scope('AttentionModule/output'):
logits = self.Conv3d_block(layer1_resblock3, [1, 1, 1, self.num_channels, self.num_classes], is_training=self.train_phase)
return logits
if __name__=="__main__":
main()