-
Notifications
You must be signed in to change notification settings - Fork 1.1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
fix device propogation for noise and add noise tests
- Loading branch information
1 parent
225a896
commit bf3cc4e
Showing
2 changed files
with
177 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
124 changes: 124 additions & 0 deletions
124
source/extensions/omni.isaac.lab/test/utils/test_noise.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,124 @@ | ||
# Copyright (c) 2022-2024, The Isaac Lab Project Developers. | ||
# All rights reserved. | ||
# | ||
# SPDX-License-Identifier: BSD-3-Clause | ||
|
||
"""Launch Isaac Sim Simulator first.""" | ||
|
||
from omni.isaac.lab.app import AppLauncher, run_tests | ||
|
||
# launch omniverse app | ||
app_launcher = AppLauncher(headless=True) | ||
simulation_app = app_launcher.app | ||
|
||
"""Rest everything follows.""" | ||
|
||
import time | ||
import torch | ||
import unittest | ||
from dataclasses import MISSING | ||
|
||
import omni.isaac.lab.utils.noise as noise | ||
from omni.isaac.lab.utils import configclass | ||
|
||
|
||
|
||
class TestNoise(unittest.TestCase): | ||
"""Test different noise implementations.""" | ||
|
||
def test_gaussian_noise(self): | ||
"""Test guassian_noise function.""" | ||
|
||
for device in ["cpu","cuda"]: | ||
for noise_device in ["cpu","cuda"]: | ||
for op in ["add","scale","abs"]: | ||
with self.subTest(device=device, noise_device=noise_device, operation=op): | ||
# create random data set | ||
data = torch.rand(10000, 3, device=device) | ||
# define standard deviation and mean | ||
std = torch.tensor([0.1,0.2,0.3],device=noise_device) | ||
mean = torch.tensor([0.4,0.5,0.6],device=noise_device) | ||
# create noise config | ||
noise_cfg = noise.GaussianNoiseCfg(std=std, | ||
mean=mean, | ||
operation=op) | ||
|
||
for i in range(10): | ||
# apply noise | ||
noisy_data = noise_cfg.func(data,cfg=noise_cfg) | ||
# calculate resulting noise compared to original data set | ||
if op=="add": | ||
std_result, mean_result = torch.std_mean(noisy_data-data,dim=0) | ||
elif op=="scale": | ||
std_result, mean_result = torch.std_mean(noisy_data/data,dim=0) | ||
elif op=="abs": | ||
std_result, mean_result = torch.std_mean(noisy_data,dim=0) | ||
|
||
self.assertTrue(noise_cfg.mean.device,device) | ||
self.assertTrue(noise_cfg.std.device,device) | ||
torch.testing.assert_close(noise_cfg.std,std_result,atol=1e-2,rtol=1e-2) | ||
torch.testing.assert_close(noise_cfg.mean,mean_result,atol=1e-2,rtol=1e-2) | ||
|
||
|
||
def test_uniform_noise(self): | ||
"""Test uniform_noise function.""" | ||
for device in ["cpu","cuda"]: | ||
for noise_device in ["cpu","cuda"]: | ||
for op in ["add","scale","abs"]: | ||
with self.subTest(device=device, noise_device=noise_device,operation=op): | ||
# create random data set | ||
data = torch.rand(10000, 3, device=device) | ||
# define uniform minimum and maximum | ||
n_min = torch.tensor([0.1,0.2,0.3],device=noise_device) | ||
n_max = torch.tensor([0.4,0.5,0.6],device=noise_device) | ||
# create noise config | ||
noise_cfg = noise.UniformNoiseCfg(n_max=n_max, n_min=n_min,operation=op) | ||
|
||
for i in range(10): | ||
# apply noise | ||
noisy_data = noise_cfg.func(data,cfg=noise_cfg) | ||
# calculate resulting noise compared to original data set | ||
if op=="add": | ||
min_result, _ = torch.min(noisy_data-data,dim=0) | ||
max_result, _ = torch.max(noisy_data-data,dim=0) | ||
elif op=="scale": | ||
min_result, _ = torch.min(torch.div(noisy_data,data),dim=0) | ||
max_result, _ = torch.max(torch.div(noisy_data,data),dim=0) | ||
elif op=="abs": | ||
min_result, _ = torch.min(noisy_data,dim=0) | ||
max_result, _ = torch.max(noisy_data,dim=0) | ||
|
||
self.assertTrue(noise_cfg.n_min.device,device) | ||
self.assertTrue(noise_cfg.n_max.device,device) | ||
self.assertTrue(all(torch.le(noise_cfg.n_min, min_result).tolist())) | ||
self.assertTrue(all(torch.ge(noise_cfg.n_max, max_result).tolist())) | ||
|
||
def test_constant_noise(self): | ||
"""Test constant_noise""" | ||
for device in ["cpu","cuda"]: | ||
for noise_device in ["cpu","cuda"]: | ||
for op in ["add","scale","abs"]: | ||
with self.subTest(device=device, noise_device=noise_device,operation=op): | ||
# create random data set | ||
data = torch.rand(10000, 3, device=device) | ||
# define a bias | ||
bias = torch.tensor([0.1,0.2,0.3],device=noise_device) | ||
# create noise config | ||
noise_cfg = noise.ConstantNoiseCfg(bias=bias, operation=op) | ||
|
||
for i in range(10): | ||
# apply noise | ||
noisy_data = noise_cfg.func(data,cfg=noise_cfg) | ||
# calculate resulting noise compared to original data set | ||
if op=="add": | ||
bias_result = noisy_data-data | ||
elif op=="scale": | ||
bias_result = noisy_data/data | ||
elif op=="abs": | ||
bias_result = noisy_data | ||
|
||
self.assertTrue(noise_cfg.bias.device,device) | ||
torch.testing.assert_close(noise_cfg.bias.repeat(data.shape[0],1),bias_result) | ||
|
||
if __name__ == "__main__": | ||
run_tests() |