This repository has been archived by the owner on Mar 9, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 13
/
preprocess_hubert_f0.py
135 lines (111 loc) · 4.32 KB
/
preprocess_hubert_f0.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import os
import argparse
import torch
import json
from glob import glob
import audio as Audio
from pyworld import pyworld
from tqdm import tqdm
from scipy.io import wavfile
from utils.tools import get_configs_of
import utils.tools
#import h5py
import logging
logging.getLogger('numba').setLevel(logging.WARNING)
import parselmouth
import librosa
import numpy as np
config, *_ = get_configs_of("ms")
sampling_rate = config["preprocessing"]["audio"]["sampling_rate"]
hop_length = config["preprocessing"]["stft"]["hop_length"]
STFT = Audio.stft.TacotronSTFT(
config["preprocessing"]["stft"]["filter_length"],
config["preprocessing"]["stft"]["hop_length"],
config["preprocessing"]["stft"]["win_length"],
config["preprocessing"]["mel"]["n_mel_channels"],
config["preprocessing"]["audio"]["sampling_rate"],
config["preprocessing"]["mel"]["mel_fmin"],
config["preprocessing"]["mel"]["mel_fmax"],
)
def get_f0(path,p_len=None, f0_up_key=0):
x, sr = librosa.load(path, sr=None)
assert sr == sampling_rate
if p_len is None:
p_len = x.shape[0]//hop_length
else:
assert abs(p_len-x.shape[0]//hop_length) < 3, (path, p_len, x.shape)
time_step = hop_length / sampling_rate * 1000
f0_min = 50
f0_max = 1100
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
f0 = parselmouth.Sound(x, sampling_rate).to_pitch_ac(
time_step=time_step / 1000, voicing_threshold=0.6,
pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency']
pad_size=(p_len - len(f0) + 1) // 2
if(pad_size>0 or p_len - len(f0) - pad_size>0):
f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant')
f0bak = f0.copy()
f0 *= pow(2, f0_up_key / 12)
f0_mel = 1127 * np.log(1 + f0 / 700)
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (f0_mel_max - f0_mel_min) + 1
f0_mel[f0_mel <= 1] = 1
f0_mel[f0_mel > 255] = 255
f0_coarse = np.rint(f0_mel).astype(np.int)
return f0_coarse, f0bak
def resize2d(x, target_len):
source = np.array(x)
source[source<0.001] = np.nan
target = np.interp(np.arange(0, len(source)*target_len, len(source))/ target_len, np.arange(0, len(source)), source)
res = np.nan_to_num(target)
return res
def compute_f0(path, c_len):
x, sr = librosa.load(path, sr=None)
assert sr == sampling_rate
f0, t = pyworld.dio(
x.astype(np.double),
fs=sr,
f0_ceil=800,
frame_period=1000 * hop_length / sr,
)
f0 = pyworld.stonemask(x.astype(np.double), f0, t, sampling_rate)
for index, pitch in enumerate(f0):
f0[index] = round(pitch, 1)
assert abs(c_len - x.shape[0]//hop_length) < 3, (c_len, f0.shape)
return None, resize2d(f0, c_len)
def process(filename):
print(filename)
mel_path = filename + ".mel.npy"
if not os.path.exists(mel_path):
wav, sr = librosa.load(filename,sr=None)
assert sr == sampling_rate
mel_spectrogram, energy = Audio.tools.get_mel_from_wav(wav, STFT)
np.save(mel_path, mel_spectrogram)
else:
mel_spectrogram = np.load(mel_path)
save_name = filename+".soft.npy"
if not os.path.exists(save_name):
devive = torch.device("cuda" if torch.cuda.is_available() else "cpu")
wav, sr = librosa.load(filename+".16k.wav",sr=None)
assert sr == 16000
wav = torch.from_numpy(wav).unsqueeze(0).to(devive)
c = utils.tools.get_hubert_content(hmodel, wav).cpu().squeeze(0)
c = utils.tools.repeat_expand_2d(c, mel_spectrogram.shape[-1]).numpy()
np.save(save_name,c)
else:
c = np.load(save_name)
f0path = filename+".f0.npy"
if not os.path.exists(f0path):
cf0, f0 = compute_f0(filename, c.shape[-1])
np.save(f0path, f0)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--in_dir", type=str, default="dataset/", help="path to input dir")
args = parser.parse_args()
print("Loading hubert for content...")
hmodel = utils.tools.get_hubert_model(0 if torch.cuda.is_available() else None)
print("Loaded hubert.")
filenames = glob(f'{args.in_dir}/*/*.wav', recursive=True)#[:10]
filenames = [i for i in filenames if not i.endswith(".16k.wav")]
for filename in tqdm(filenames):
process(filename)