forked from nvpro-samples/vk_raytracing_tutorial_KHR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
hello_vulkan.cpp
930 lines (775 loc) · 40.6 KB
/
hello_vulkan.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
/*
* Copyright (c) 2014-2021, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* SPDX-FileCopyrightText: Copyright (c) 2014-2021 NVIDIA CORPORATION
* SPDX-License-Identifier: Apache-2.0
*/
#include <sstream>
#define STB_IMAGE_IMPLEMENTATION
#include "obj_loader.h"
#include "stb_image.h"
#include "hello_vulkan.h"
#include "nvh/alignment.hpp"
#include "nvh/cameramanipulator.hpp"
#include "nvh/fileoperations.hpp"
#include "nvvk/commands_vk.hpp"
#include "nvvk/descriptorsets_vk.hpp"
#include "nvvk/images_vk.hpp"
#include "nvvk/pipeline_vk.hpp"
#include "nvvk/renderpasses_vk.hpp"
#include "nvvk/shaders_vk.hpp"
#include "nvvk/buffers_vk.hpp"
extern std::vector<std::string> defaultSearchPaths;
//--------------------------------------------------------------------------------------------------
// Keep the handle on the device
// Initialize the tool to do all our allocations: buffers, images
//
void HelloVulkan::setup(const VkInstance& instance, const VkDevice& device, const VkPhysicalDevice& physicalDevice, uint32_t queueFamily)
{
AppBaseVk::setup(instance, device, physicalDevice, queueFamily);
m_alloc.init(instance, device, physicalDevice);
m_debug.setup(m_device);
m_offscreenDepthFormat = nvvk::findDepthFormat(physicalDevice);
}
//--------------------------------------------------------------------------------------------------
// Called at each frame to update the camera matrix
//
void HelloVulkan::updateUniformBuffer(const VkCommandBuffer& cmdBuf)
{
// Prepare new UBO contents on host.
const float aspectRatio = m_size.width / static_cast<float>(m_size.height);
GlobalUniforms hostUBO = {};
const auto& view = CameraManip.getMatrix();
const auto& proj = nvmath::perspectiveVK(CameraManip.getFov(), aspectRatio, 0.1f, 1000.0f);
// proj[1][1] *= -1; // Inverting Y for Vulkan (not needed with perspectiveVK).
hostUBO.viewProj = proj * view;
hostUBO.viewInverse = nvmath::invert(view);
hostUBO.projInverse = nvmath::invert(proj);
// UBO on the device, and what stages access it.
VkBuffer deviceUBO = m_bGlobals.buffer;
auto uboUsageStages = VK_PIPELINE_STAGE_VERTEX_SHADER_BIT | VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR;
// Ensure that the modified UBO is not visible to previous frames.
VkBufferMemoryBarrier beforeBarrier{VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER};
beforeBarrier.srcAccessMask = VK_ACCESS_SHADER_READ_BIT;
beforeBarrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
beforeBarrier.buffer = deviceUBO;
beforeBarrier.offset = 0;
beforeBarrier.size = sizeof(hostUBO);
vkCmdPipelineBarrier(cmdBuf, uboUsageStages, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_DEPENDENCY_DEVICE_GROUP_BIT, 0,
nullptr, 1, &beforeBarrier, 0, nullptr);
// Schedule the host-to-device upload. (hostUBO is copied into the cmd
// buffer so it is okay to deallocate when the function returns).
vkCmdUpdateBuffer(cmdBuf, m_bGlobals.buffer, 0, sizeof(GlobalUniforms), &hostUBO);
// Making sure the updated UBO will be visible.
VkBufferMemoryBarrier afterBarrier{VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER};
afterBarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
afterBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
afterBarrier.buffer = deviceUBO;
afterBarrier.offset = 0;
afterBarrier.size = sizeof(hostUBO);
vkCmdPipelineBarrier(cmdBuf, VK_PIPELINE_STAGE_TRANSFER_BIT, uboUsageStages, VK_DEPENDENCY_DEVICE_GROUP_BIT, 0,
nullptr, 1, &afterBarrier, 0, nullptr);
}
//--------------------------------------------------------------------------------------------------
// Describing the layout pushed when rendering
//
void HelloVulkan::createDescriptorSetLayout()
{
auto nbTxt = static_cast<uint32_t>(m_textures.size());
// Camera matrices
m_descSetLayoutBind.addBinding(SceneBindings::eGlobals, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1,
VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_RAYGEN_BIT_KHR);
// Obj descriptions
m_descSetLayoutBind.addBinding(SceneBindings::eObjDescs, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1,
VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR);
// Textures
m_descSetLayoutBind.addBinding(SceneBindings::eTextures, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, nbTxt,
VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR);
m_descSetLayout = m_descSetLayoutBind.createLayout(m_device);
m_descPool = m_descSetLayoutBind.createPool(m_device, 1);
m_descSet = nvvk::allocateDescriptorSet(m_device, m_descPool, m_descSetLayout);
}
//--------------------------------------------------------------------------------------------------
// Setting up the buffers in the descriptor set
//
void HelloVulkan::updateDescriptorSet()
{
std::vector<VkWriteDescriptorSet> writes;
// Camera matrices and scene description
VkDescriptorBufferInfo dbiUnif{m_bGlobals.buffer, 0, VK_WHOLE_SIZE};
writes.emplace_back(m_descSetLayoutBind.makeWrite(m_descSet, SceneBindings::eGlobals, &dbiUnif));
VkDescriptorBufferInfo dbiSceneDesc{m_bObjDesc.buffer, 0, VK_WHOLE_SIZE};
writes.emplace_back(m_descSetLayoutBind.makeWrite(m_descSet, SceneBindings::eObjDescs, &dbiSceneDesc));
// All texture samplers
std::vector<VkDescriptorImageInfo> diit;
for(auto& texture : m_textures)
{
diit.emplace_back(texture.descriptor);
}
writes.emplace_back(m_descSetLayoutBind.makeWriteArray(m_descSet, SceneBindings::eTextures, diit.data()));
// Writing the information
vkUpdateDescriptorSets(m_device, static_cast<uint32_t>(writes.size()), writes.data(), 0, nullptr);
}
//--------------------------------------------------------------------------------------------------
// Creating the pipeline layout
//
void HelloVulkan::createGraphicsPipeline()
{
VkPushConstantRange pushConstantRanges = {VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0, sizeof(PushConstantRaster)};
// Creating the Pipeline Layout
VkPipelineLayoutCreateInfo createInfo{VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO};
createInfo.setLayoutCount = 1;
createInfo.pSetLayouts = &m_descSetLayout;
createInfo.pushConstantRangeCount = 1;
createInfo.pPushConstantRanges = &pushConstantRanges;
vkCreatePipelineLayout(m_device, &createInfo, nullptr, &m_pipelineLayout);
// Creating the Pipeline
std::vector<std::string> paths = defaultSearchPaths;
nvvk::GraphicsPipelineGeneratorCombined gpb(m_device, m_pipelineLayout, m_offscreenRenderPass);
gpb.depthStencilState.depthTestEnable = true;
gpb.addShader(nvh::loadFile("spv/vert_shader.vert.spv", true, paths, true), VK_SHADER_STAGE_VERTEX_BIT);
gpb.addShader(nvh::loadFile("spv/frag_shader.frag.spv", true, paths, true), VK_SHADER_STAGE_FRAGMENT_BIT);
gpb.addBindingDescription({0, sizeof(VertexObj)});
gpb.addAttributeDescriptions({
{0, 0, VK_FORMAT_R32G32B32_SFLOAT, static_cast<uint32_t>(offsetof(VertexObj, pos))},
{1, 0, VK_FORMAT_R32G32B32_SFLOAT, static_cast<uint32_t>(offsetof(VertexObj, nrm))},
{2, 0, VK_FORMAT_R32G32B32_SFLOAT, static_cast<uint32_t>(offsetof(VertexObj, color))},
{3, 0, VK_FORMAT_R32G32_SFLOAT, static_cast<uint32_t>(offsetof(VertexObj, texCoord))},
});
m_graphicsPipeline = gpb.createPipeline();
m_debug.setObjectName(m_graphicsPipeline, "Graphics");
}
//--------------------------------------------------------------------------------------------------
// Loading the OBJ file and setting up all buffers
//
void HelloVulkan::loadModel(const std::string& filename, nvmath::mat4f transform)
{
LOGI("Loading File: %s \n", filename.c_str());
ObjLoader loader;
loader.loadModel(filename);
// Converting from Srgb to linear
for(auto& m : loader.m_materials)
{
m.ambient = nvmath::pow(m.ambient, 2.2f);
m.diffuse = nvmath::pow(m.diffuse, 2.2f);
m.specular = nvmath::pow(m.specular, 2.2f);
}
ObjModel model;
model.nbIndices = static_cast<uint32_t>(loader.m_indices.size());
model.nbVertices = static_cast<uint32_t>(loader.m_vertices.size());
// Create the buffers on Device and copy vertices, indices and materials
nvvk::CommandPool cmdBufGet(m_device, m_graphicsQueueIndex);
VkCommandBuffer cmdBuf = cmdBufGet.createCommandBuffer();
VkBufferUsageFlags flag = VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT;
VkBufferUsageFlags rayTracingFlags = // used also for building acceleration structures
flag | VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
model.vertexBuffer = m_alloc.createBuffer(cmdBuf, loader.m_vertices, VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | rayTracingFlags);
model.indexBuffer = m_alloc.createBuffer(cmdBuf, loader.m_indices, VK_BUFFER_USAGE_INDEX_BUFFER_BIT | rayTracingFlags);
model.matColorBuffer = m_alloc.createBuffer(cmdBuf, loader.m_materials, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | flag);
model.matIndexBuffer = m_alloc.createBuffer(cmdBuf, loader.m_matIndx, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | flag);
// Creates all textures found and find the offset for this model
auto txtOffset = static_cast<uint32_t>(m_textures.size());
createTextureImages(cmdBuf, loader.m_textures);
cmdBufGet.submitAndWait(cmdBuf);
m_alloc.finalizeAndReleaseStaging();
std::string objNb = std::to_string(m_objModel.size());
m_debug.setObjectName(model.vertexBuffer.buffer, (std::string("vertex_" + objNb)));
m_debug.setObjectName(model.indexBuffer.buffer, (std::string("index_" + objNb)));
m_debug.setObjectName(model.matColorBuffer.buffer, (std::string("mat_" + objNb)));
m_debug.setObjectName(model.matIndexBuffer.buffer, (std::string("matIdx_" + objNb)));
// Keeping transformation matrix of the instance
ObjInstance instance;
instance.transform = transform;
instance.objIndex = static_cast<uint32_t>(m_objModel.size());
m_instances.push_back(instance);
// Creating information for device access
ObjDesc desc;
desc.txtOffset = txtOffset;
desc.vertexAddress = nvvk::getBufferDeviceAddress(m_device, model.vertexBuffer.buffer);
desc.indexAddress = nvvk::getBufferDeviceAddress(m_device, model.indexBuffer.buffer);
desc.materialAddress = nvvk::getBufferDeviceAddress(m_device, model.matColorBuffer.buffer);
desc.materialIndexAddress = nvvk::getBufferDeviceAddress(m_device, model.matIndexBuffer.buffer);
// Keeping the obj host model and device description
m_objModel.emplace_back(model);
m_objDesc.emplace_back(desc);
}
//--------------------------------------------------------------------------------------------------
// Creating the uniform buffer holding the camera matrices
// - Buffer is host visible
//
void HelloVulkan::createUniformBuffer()
{
m_bGlobals = m_alloc.createBuffer(sizeof(GlobalUniforms), VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
m_debug.setObjectName(m_bGlobals.buffer, "Globals");
}
//--------------------------------------------------------------------------------------------------
// Create a storage buffer containing the description of the scene elements
// - Which geometry is used by which instance
// - Transformation
// - Offset for texture
//
void HelloVulkan::createObjDescriptionBuffer()
{
nvvk::CommandPool cmdGen(m_device, m_graphicsQueueIndex);
auto cmdBuf = cmdGen.createCommandBuffer();
m_bObjDesc = m_alloc.createBuffer(cmdBuf, m_objDesc, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT);
cmdGen.submitAndWait(cmdBuf);
m_alloc.finalizeAndReleaseStaging();
m_debug.setObjectName(m_bObjDesc.buffer, "ObjDescs");
}
//--------------------------------------------------------------------------------------------------
// Creating all textures and samplers
//
void HelloVulkan::createTextureImages(const VkCommandBuffer& cmdBuf, const std::vector<std::string>& textures)
{
VkSamplerCreateInfo samplerCreateInfo{VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO};
samplerCreateInfo.minFilter = VK_FILTER_LINEAR;
samplerCreateInfo.magFilter = VK_FILTER_LINEAR;
samplerCreateInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
samplerCreateInfo.maxLod = FLT_MAX;
VkFormat format = VK_FORMAT_R8G8B8A8_SRGB;
// If no textures are present, create a dummy one to accommodate the pipeline layout
if(textures.empty() && m_textures.empty())
{
nvvk::Texture texture;
std::array<uint8_t, 4> color{255u, 255u, 255u, 255u};
VkDeviceSize bufferSize = sizeof(color);
auto imgSize = VkExtent2D{1, 1};
auto imageCreateInfo = nvvk::makeImage2DCreateInfo(imgSize, format);
// Creating the dummy texture
nvvk::Image image = m_alloc.createImage(cmdBuf, bufferSize, color.data(), imageCreateInfo);
VkImageViewCreateInfo ivInfo = nvvk::makeImageViewCreateInfo(image.image, imageCreateInfo);
texture = m_alloc.createTexture(image, ivInfo, samplerCreateInfo);
// The image format must be in VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL
nvvk::cmdBarrierImageLayout(cmdBuf, texture.image, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
m_textures.push_back(texture);
}
else
{
// Uploading all images
for(const auto& texture : textures)
{
std::stringstream o;
int texWidth, texHeight, texChannels;
o << "media/textures/" << texture;
std::string txtFile = nvh::findFile(o.str(), defaultSearchPaths, true);
stbi_uc* stbi_pixels = stbi_load(txtFile.c_str(), &texWidth, &texHeight, &texChannels, STBI_rgb_alpha);
std::array<stbi_uc, 4> color{255u, 0u, 255u, 255u};
stbi_uc* pixels = stbi_pixels;
// Handle failure
if(!stbi_pixels)
{
texWidth = texHeight = 1;
texChannels = 4;
pixels = reinterpret_cast<stbi_uc*>(color.data());
}
VkDeviceSize bufferSize = static_cast<uint64_t>(texWidth) * texHeight * sizeof(uint8_t) * 4;
auto imgSize = VkExtent2D{(uint32_t)texWidth, (uint32_t)texHeight};
auto imageCreateInfo = nvvk::makeImage2DCreateInfo(imgSize, format, VK_IMAGE_USAGE_SAMPLED_BIT, true);
{
nvvk::Image image = m_alloc.createImage(cmdBuf, bufferSize, pixels, imageCreateInfo);
nvvk::cmdGenerateMipmaps(cmdBuf, image.image, format, imgSize, imageCreateInfo.mipLevels);
VkImageViewCreateInfo ivInfo = nvvk::makeImageViewCreateInfo(image.image, imageCreateInfo);
nvvk::Texture texture = m_alloc.createTexture(image, ivInfo, samplerCreateInfo);
m_textures.push_back(texture);
}
stbi_image_free(stbi_pixels);
}
}
}
//--------------------------------------------------------------------------------------------------
// Destroying all allocations
//
void HelloVulkan::destroyResources()
{
vkDestroyPipeline(m_device, m_graphicsPipeline, nullptr);
vkDestroyPipelineLayout(m_device, m_pipelineLayout, nullptr);
vkDestroyDescriptorPool(m_device, m_descPool, nullptr);
vkDestroyDescriptorSetLayout(m_device, m_descSetLayout, nullptr);
m_alloc.destroy(m_bGlobals);
m_alloc.destroy(m_bObjDesc);
for(auto& m : m_objModel)
{
m_alloc.destroy(m.vertexBuffer);
m_alloc.destroy(m.indexBuffer);
m_alloc.destroy(m.matColorBuffer);
m_alloc.destroy(m.matIndexBuffer);
}
for(auto& t : m_textures)
{
m_alloc.destroy(t);
}
//#Post
m_alloc.destroy(m_offscreenColor);
m_alloc.destroy(m_offscreenDepth);
vkDestroyPipeline(m_device, m_postPipeline, nullptr);
vkDestroyPipelineLayout(m_device, m_postPipelineLayout, nullptr);
vkDestroyDescriptorPool(m_device, m_postDescPool, nullptr);
vkDestroyDescriptorSetLayout(m_device, m_postDescSetLayout, nullptr);
vkDestroyRenderPass(m_device, m_offscreenRenderPass, nullptr);
vkDestroyFramebuffer(m_device, m_offscreenFramebuffer, nullptr);
// #VKRay
m_rtBuilder.destroy();
vkDestroyPipeline(m_device, m_rtPipeline, nullptr);
vkDestroyPipelineLayout(m_device, m_rtPipelineLayout, nullptr);
vkDestroyDescriptorPool(m_device, m_rtDescPool, nullptr);
vkDestroyDescriptorSetLayout(m_device, m_rtDescSetLayout, nullptr);
m_alloc.destroy(m_rtSBTBuffer);
m_alloc.deinit();
}
//--------------------------------------------------------------------------------------------------
// Drawing the scene in raster mode
//
void HelloVulkan::rasterize(const VkCommandBuffer& cmdBuf)
{
VkDeviceSize offset{0};
m_debug.beginLabel(cmdBuf, "Rasterize");
// Dynamic Viewport
setViewport(cmdBuf);
// Drawing all triangles
vkCmdBindPipeline(cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, m_graphicsPipeline);
vkCmdBindDescriptorSets(cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, m_pipelineLayout, 0, 1, &m_descSet, 0, nullptr);
for(const HelloVulkan::ObjInstance& inst : m_instances)
{
auto& model = m_objModel[inst.objIndex];
m_pcRaster.objIndex = inst.objIndex; // Telling which object is drawn
m_pcRaster.modelMatrix = inst.transform;
vkCmdPushConstants(cmdBuf, m_pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0,
sizeof(PushConstantRaster), &m_pcRaster);
vkCmdBindVertexBuffers(cmdBuf, 0, 1, &model.vertexBuffer.buffer, &offset);
vkCmdBindIndexBuffer(cmdBuf, model.indexBuffer.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(cmdBuf, model.nbIndices, 1, 0, 0, 0);
}
m_debug.endLabel(cmdBuf);
}
//--------------------------------------------------------------------------------------------------
// Handling resize of the window
//
void HelloVulkan::onResize(int /*w*/, int /*h*/)
{
createOffscreenRender();
updatePostDescriptorSet();
updateRtDescriptorSet();
}
//////////////////////////////////////////////////////////////////////////
// Post-processing
//////////////////////////////////////////////////////////////////////////
//--------------------------------------------------------------------------------------------------
// Creating an offscreen frame buffer and the associated render pass
//
void HelloVulkan::createOffscreenRender()
{
m_alloc.destroy(m_offscreenColor);
m_alloc.destroy(m_offscreenDepth);
// Creating the color image
{
auto colorCreateInfo = nvvk::makeImage2DCreateInfo(m_size, m_offscreenColorFormat,
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_SAMPLED_BIT
| VK_IMAGE_USAGE_STORAGE_BIT);
nvvk::Image image = m_alloc.createImage(colorCreateInfo);
VkImageViewCreateInfo ivInfo = nvvk::makeImageViewCreateInfo(image.image, colorCreateInfo);
VkSamplerCreateInfo sampler{VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO};
m_offscreenColor = m_alloc.createTexture(image, ivInfo, sampler);
m_offscreenColor.descriptor.imageLayout = VK_IMAGE_LAYOUT_GENERAL;
}
// Creating the depth buffer
auto depthCreateInfo = nvvk::makeImage2DCreateInfo(m_size, m_offscreenDepthFormat, VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT);
{
nvvk::Image image = m_alloc.createImage(depthCreateInfo);
VkImageViewCreateInfo depthStencilView{VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO};
depthStencilView.viewType = VK_IMAGE_VIEW_TYPE_2D;
depthStencilView.format = m_offscreenDepthFormat;
depthStencilView.subresourceRange = {VK_IMAGE_ASPECT_DEPTH_BIT, 0, 1, 0, 1};
depthStencilView.image = image.image;
m_offscreenDepth = m_alloc.createTexture(image, depthStencilView);
}
// Setting the image layout for both color and depth
{
nvvk::CommandPool genCmdBuf(m_device, m_graphicsQueueIndex);
auto cmdBuf = genCmdBuf.createCommandBuffer();
nvvk::cmdBarrierImageLayout(cmdBuf, m_offscreenColor.image, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_GENERAL);
nvvk::cmdBarrierImageLayout(cmdBuf, m_offscreenDepth.image, VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, VK_IMAGE_ASPECT_DEPTH_BIT);
genCmdBuf.submitAndWait(cmdBuf);
}
// Creating a renderpass for the offscreen
if(!m_offscreenRenderPass)
{
m_offscreenRenderPass = nvvk::createRenderPass(m_device, {m_offscreenColorFormat}, m_offscreenDepthFormat, 1, true,
true, VK_IMAGE_LAYOUT_GENERAL, VK_IMAGE_LAYOUT_GENERAL);
}
// Creating the frame buffer for offscreen
std::vector<VkImageView> attachments = {m_offscreenColor.descriptor.imageView, m_offscreenDepth.descriptor.imageView};
vkDestroyFramebuffer(m_device, m_offscreenFramebuffer, nullptr);
VkFramebufferCreateInfo info{VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO};
info.renderPass = m_offscreenRenderPass;
info.attachmentCount = 2;
info.pAttachments = attachments.data();
info.width = m_size.width;
info.height = m_size.height;
info.layers = 1;
vkCreateFramebuffer(m_device, &info, nullptr, &m_offscreenFramebuffer);
}
//--------------------------------------------------------------------------------------------------
// The pipeline is how things are rendered, which shaders, type of primitives, depth test and more
//
void HelloVulkan::createPostPipeline()
{
// Push constants in the fragment shader
VkPushConstantRange pushConstantRanges = {VK_SHADER_STAGE_FRAGMENT_BIT, 0, sizeof(float)};
// Creating the pipeline layout
VkPipelineLayoutCreateInfo createInfo{VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO};
createInfo.setLayoutCount = 1;
createInfo.pSetLayouts = &m_postDescSetLayout;
createInfo.pushConstantRangeCount = 1;
createInfo.pPushConstantRanges = &pushConstantRanges;
vkCreatePipelineLayout(m_device, &createInfo, nullptr, &m_postPipelineLayout);
// Pipeline: completely generic, no vertices
nvvk::GraphicsPipelineGeneratorCombined pipelineGenerator(m_device, m_postPipelineLayout, m_renderPass);
pipelineGenerator.addShader(nvh::loadFile("spv/passthrough.vert.spv", true, defaultSearchPaths, true), VK_SHADER_STAGE_VERTEX_BIT);
pipelineGenerator.addShader(nvh::loadFile("spv/post.frag.spv", true, defaultSearchPaths, true), VK_SHADER_STAGE_FRAGMENT_BIT);
pipelineGenerator.rasterizationState.cullMode = VK_CULL_MODE_NONE;
m_postPipeline = pipelineGenerator.createPipeline();
m_debug.setObjectName(m_postPipeline, "post");
}
//--------------------------------------------------------------------------------------------------
// The descriptor layout is the description of the data that is passed to the vertex or the
// fragment program.
//
void HelloVulkan::createPostDescriptor()
{
m_postDescSetLayoutBind.addBinding(0, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, VK_SHADER_STAGE_FRAGMENT_BIT);
m_postDescSetLayout = m_postDescSetLayoutBind.createLayout(m_device);
m_postDescPool = m_postDescSetLayoutBind.createPool(m_device);
m_postDescSet = nvvk::allocateDescriptorSet(m_device, m_postDescPool, m_postDescSetLayout);
}
//--------------------------------------------------------------------------------------------------
// Update the output
//
void HelloVulkan::updatePostDescriptorSet()
{
VkWriteDescriptorSet writeDescriptorSets = m_postDescSetLayoutBind.makeWrite(m_postDescSet, 0, &m_offscreenColor.descriptor);
vkUpdateDescriptorSets(m_device, 1, &writeDescriptorSets, 0, nullptr);
}
//--------------------------------------------------------------------------------------------------
// Draw a full screen quad with the attached image
//
void HelloVulkan::drawPost(VkCommandBuffer cmdBuf)
{
m_debug.beginLabel(cmdBuf, "Post");
setViewport(cmdBuf);
auto aspectRatio = static_cast<float>(m_size.width) / static_cast<float>(m_size.height);
vkCmdPushConstants(cmdBuf, m_postPipelineLayout, VK_SHADER_STAGE_FRAGMENT_BIT, 0, sizeof(float), &aspectRatio);
vkCmdBindPipeline(cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, m_postPipeline);
vkCmdBindDescriptorSets(cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, m_postPipelineLayout, 0, 1, &m_postDescSet, 0, nullptr);
vkCmdDraw(cmdBuf, 3, 1, 0, 0);
m_debug.endLabel(cmdBuf);
}
//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
//--------------------------------------------------------------------------------------------------
// Initialize Vulkan ray tracing
// #VKRay
void HelloVulkan::initRayTracing()
{
// Requesting ray tracing properties
VkPhysicalDeviceProperties2 prop2{VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2};
prop2.pNext = &m_rtProperties;
vkGetPhysicalDeviceProperties2(m_physicalDevice, &prop2);
m_rtBuilder.setup(m_device, &m_alloc, m_graphicsQueueIndex);
}
//--------------------------------------------------------------------------------------------------
// Convert an OBJ model into the ray tracing geometry used to build the BLAS
//
auto HelloVulkan::objectToVkGeometryKHR(const ObjModel& model)
{
// BLAS builder requires raw device addresses.
VkDeviceAddress vertexAddress = nvvk::getBufferDeviceAddress(m_device, model.vertexBuffer.buffer);
VkDeviceAddress indexAddress = nvvk::getBufferDeviceAddress(m_device, model.indexBuffer.buffer);
uint32_t maxPrimitiveCount = model.nbIndices / 3;
// Describe buffer as array of VertexObj.
VkAccelerationStructureGeometryTrianglesDataKHR triangles{VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_TRIANGLES_DATA_KHR};
triangles.vertexFormat = VK_FORMAT_R32G32B32_SFLOAT; // vec3 vertex position data.
triangles.vertexData.deviceAddress = vertexAddress;
triangles.vertexStride = sizeof(VertexObj);
// Describe index data (32-bit unsigned int)
triangles.indexType = VK_INDEX_TYPE_UINT32;
triangles.indexData.deviceAddress = indexAddress;
// Indicate identity transform by setting transformData to null device pointer.
//triangles.transformData = {};
triangles.maxVertex = model.nbVertices;
// Identify the above data as containing opaque triangles.
VkAccelerationStructureGeometryKHR asGeom{VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_KHR};
asGeom.geometryType = VK_GEOMETRY_TYPE_TRIANGLES_KHR;
asGeom.flags = VK_GEOMETRY_OPAQUE_BIT_KHR;
asGeom.geometry.triangles = triangles;
// The entire array will be used to build the BLAS.
VkAccelerationStructureBuildRangeInfoKHR offset;
offset.firstVertex = 0;
offset.primitiveCount = maxPrimitiveCount;
offset.primitiveOffset = 0;
offset.transformOffset = 0;
// Our blas is made from only one geometry, but could be made of many geometries
nvvk::RaytracingBuilderKHR::BlasInput input;
input.asGeometry.emplace_back(asGeom);
input.asBuildOffsetInfo.emplace_back(offset);
return input;
}
//--------------------------------------------------------------------------------------------------
//
//
void HelloVulkan::createBottomLevelAS()
{
// BLAS - Storing each primitive in a geometry
std::vector<nvvk::RaytracingBuilderKHR::BlasInput> allBlas;
allBlas.reserve(m_objModel.size());
for(const auto& obj : m_objModel)
{
auto blas = objectToVkGeometryKHR(obj);
// We could add more geometry in each BLAS, but we add only one for now
allBlas.emplace_back(blas);
}
m_rtBuilder.buildBlas(allBlas, VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR);
}
//--------------------------------------------------------------------------------------------------
//
//
void HelloVulkan::createTopLevelAS()
{
std::vector<VkAccelerationStructureInstanceKHR> tlas;
tlas.reserve(m_instances.size());
for(const HelloVulkan::ObjInstance& inst : m_instances)
{
VkAccelerationStructureInstanceKHR rayInst{};
rayInst.transform = nvvk::toTransformMatrixKHR(inst.transform); // Position of the instance
rayInst.instanceCustomIndex = inst.objIndex; // gl_InstanceCustomIndexEXT
rayInst.accelerationStructureReference = m_rtBuilder.getBlasDeviceAddress(inst.objIndex);
rayInst.flags = VK_GEOMETRY_INSTANCE_TRIANGLE_FACING_CULL_DISABLE_BIT_KHR;
rayInst.mask = 0xFF; // Only be hit if rayMask & instance.mask != 0
rayInst.instanceShaderBindingTableRecordOffset = 0; // We will use the same hit group for all objects
tlas.emplace_back(rayInst);
}
m_rtBuilder.buildTlas(tlas, VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR);
}
//--------------------------------------------------------------------------------------------------
// This descriptor set holds the Acceleration structure and the output image
//
void HelloVulkan::createRtDescriptorSet()
{
// Top-level acceleration structure, usable by both the ray generation and the closest hit (to shoot shadow rays)
m_rtDescSetLayoutBind.addBinding(RtxBindings::eTlas, VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, 1,
VK_SHADER_STAGE_RAYGEN_BIT_KHR | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR); // TLAS
m_rtDescSetLayoutBind.addBinding(RtxBindings::eOutImage, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1,
VK_SHADER_STAGE_RAYGEN_BIT_KHR); // Output image
m_rtDescPool = m_rtDescSetLayoutBind.createPool(m_device);
m_rtDescSetLayout = m_rtDescSetLayoutBind.createLayout(m_device);
VkDescriptorSetAllocateInfo allocateInfo{VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO};
allocateInfo.descriptorPool = m_rtDescPool;
allocateInfo.descriptorSetCount = 1;
allocateInfo.pSetLayouts = &m_rtDescSetLayout;
vkAllocateDescriptorSets(m_device, &allocateInfo, &m_rtDescSet);
VkAccelerationStructureKHR tlas = m_rtBuilder.getAccelerationStructure();
VkWriteDescriptorSetAccelerationStructureKHR descASInfo{VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_ACCELERATION_STRUCTURE_KHR};
descASInfo.accelerationStructureCount = 1;
descASInfo.pAccelerationStructures = &tlas;
VkDescriptorImageInfo imageInfo{{}, m_offscreenColor.descriptor.imageView, VK_IMAGE_LAYOUT_GENERAL};
std::vector<VkWriteDescriptorSet> writes;
writes.emplace_back(m_rtDescSetLayoutBind.makeWrite(m_rtDescSet, RtxBindings::eTlas, &descASInfo));
writes.emplace_back(m_rtDescSetLayoutBind.makeWrite(m_rtDescSet, RtxBindings::eOutImage, &imageInfo));
vkUpdateDescriptorSets(m_device, static_cast<uint32_t>(writes.size()), writes.data(), 0, nullptr);
}
//--------------------------------------------------------------------------------------------------
// Writes the output image to the descriptor set
// - Required when changing resolution
//
void HelloVulkan::updateRtDescriptorSet()
{
// (1) Output buffer
VkDescriptorImageInfo imageInfo{{}, m_offscreenColor.descriptor.imageView, VK_IMAGE_LAYOUT_GENERAL};
VkWriteDescriptorSet wds = m_rtDescSetLayoutBind.makeWrite(m_rtDescSet, RtxBindings::eOutImage, &imageInfo);
vkUpdateDescriptorSets(m_device, 1, &wds, 0, nullptr);
}
//--------------------------------------------------------------------------------------------------
// Pipeline for the ray tracer: all shaders, raygen, chit, miss
//
void HelloVulkan::createRtPipeline()
{
enum StageIndices
{
eRaygen,
eMiss,
eMiss2,
eClosestHit,
eShaderGroupCount
};
// All stages
std::array<VkPipelineShaderStageCreateInfo, eShaderGroupCount> stages{};
VkPipelineShaderStageCreateInfo stage{VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO};
stage.pName = "main"; // All the same entry point
// Raygen
stage.module = nvvk::createShaderModule(m_device, nvh::loadFile("spv/raytrace.rgen.spv", true, defaultSearchPaths, true));
stage.stage = VK_SHADER_STAGE_RAYGEN_BIT_KHR;
stages[eRaygen] = stage;
// Miss
stage.module = nvvk::createShaderModule(m_device, nvh::loadFile("spv/raytrace.rmiss.spv", true, defaultSearchPaths, true));
stage.stage = VK_SHADER_STAGE_MISS_BIT_KHR;
stages[eMiss] = stage;
// The second miss shader is invoked when a shadow ray misses the geometry. It simply indicates that no occlusion has been found
stage.module =
nvvk::createShaderModule(m_device, nvh::loadFile("spv/raytraceShadow.rmiss.spv", true, defaultSearchPaths, true));
stage.stage = VK_SHADER_STAGE_MISS_BIT_KHR;
stages[eMiss2] = stage;
// Hit Group - Closest Hit
stage.module = nvvk::createShaderModule(m_device, nvh::loadFile("spv/raytrace.rchit.spv", true, defaultSearchPaths, true));
stage.stage = VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR;
stages[eClosestHit] = stage;
// Shader groups
VkRayTracingShaderGroupCreateInfoKHR group{VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR};
group.anyHitShader = VK_SHADER_UNUSED_KHR;
group.closestHitShader = VK_SHADER_UNUSED_KHR;
group.generalShader = VK_SHADER_UNUSED_KHR;
group.intersectionShader = VK_SHADER_UNUSED_KHR;
// Raygen
group.type = VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR;
group.generalShader = eRaygen;
m_rtShaderGroups.push_back(group);
// Miss
group.type = VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR;
group.generalShader = eMiss;
m_rtShaderGroups.push_back(group);
// Shadow Miss
group.type = VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR;
group.generalShader = eMiss2;
m_rtShaderGroups.push_back(group);
// closest hit shader
group.type = VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_KHR;
group.generalShader = VK_SHADER_UNUSED_KHR;
group.closestHitShader = eClosestHit;
m_rtShaderGroups.push_back(group);
// Push constant: we want to be able to update constants used by the shaders
VkPushConstantRange pushConstant{VK_SHADER_STAGE_RAYGEN_BIT_KHR | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_MISS_BIT_KHR,
0, sizeof(PushConstantRay)};
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo{VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO};
pipelineLayoutCreateInfo.pushConstantRangeCount = 1;
pipelineLayoutCreateInfo.pPushConstantRanges = &pushConstant;
// Descriptor sets: one specific to ray tracing, and one shared with the rasterization pipeline
std::vector<VkDescriptorSetLayout> rtDescSetLayouts = {m_rtDescSetLayout, m_descSetLayout};
pipelineLayoutCreateInfo.setLayoutCount = static_cast<uint32_t>(rtDescSetLayouts.size());
pipelineLayoutCreateInfo.pSetLayouts = rtDescSetLayouts.data();
vkCreatePipelineLayout(m_device, &pipelineLayoutCreateInfo, nullptr, &m_rtPipelineLayout);
// Assemble the shader stages and recursion depth info into the ray tracing pipeline
VkRayTracingPipelineCreateInfoKHR rayPipelineInfo{VK_STRUCTURE_TYPE_RAY_TRACING_PIPELINE_CREATE_INFO_KHR};
rayPipelineInfo.stageCount = static_cast<uint32_t>(stages.size()); // Stages are shaders
rayPipelineInfo.pStages = stages.data();
// In this case, m_rtShaderGroups.size() == 4: we have one raygen group,
// two miss shader groups, and one hit group.
rayPipelineInfo.groupCount = static_cast<uint32_t>(m_rtShaderGroups.size());
rayPipelineInfo.pGroups = m_rtShaderGroups.data();
// The ray tracing process can shoot rays from the camera, and a shadow ray can be shot from the
// hit points of the camera rays, hence a recursion level of 2. This number should be kept as low
// as possible for performance reasons. Even recursive ray tracing should be flattened into a loop
// in the ray generation to avoid deep recursion.
rayPipelineInfo.maxPipelineRayRecursionDepth = 2; // Ray depth
rayPipelineInfo.layout = m_rtPipelineLayout;
vkCreateRayTracingPipelinesKHR(m_device, {}, {}, 1, &rayPipelineInfo, nullptr, &m_rtPipeline);
for(auto& s : stages)
vkDestroyShaderModule(m_device, s.module, nullptr);
}
//--------------------------------------------------------------------------------------------------
// The Shader Binding Table (SBT)
// - getting all shader handles and write them in a SBT buffer
// - Besides exception, this could be always done like this
//
void HelloVulkan::createRtShaderBindingTable()
{
uint32_t missCount{2};
uint32_t hitCount{1};
auto handleCount = 1 + missCount + hitCount;
uint32_t handleSize = m_rtProperties.shaderGroupHandleSize;
// The SBT (buffer) need to have starting groups to be aligned and handles in the group to be aligned.
uint32_t handleSizeAligned = nvh::align_up(handleSize, m_rtProperties.shaderGroupHandleAlignment);
m_rgenRegion.stride = nvh::align_up(handleSizeAligned, m_rtProperties.shaderGroupBaseAlignment);
m_rgenRegion.size = m_rgenRegion.stride; // The size member of pRayGenShaderBindingTable must be equal to its stride member
m_missRegion.stride = handleSizeAligned;
m_missRegion.size = nvh::align_up(missCount * handleSizeAligned, m_rtProperties.shaderGroupBaseAlignment);
m_hitRegion.stride = handleSizeAligned;
m_hitRegion.size = nvh::align_up(hitCount * handleSizeAligned, m_rtProperties.shaderGroupBaseAlignment);
// Get the shader group handles
uint32_t dataSize = handleCount * handleSize;
std::vector<uint8_t> handles(dataSize);
auto result = vkGetRayTracingShaderGroupHandlesKHR(m_device, m_rtPipeline, 0, handleCount, dataSize, handles.data());
assert(result == VK_SUCCESS);
// Allocate a buffer for storing the SBT.
VkDeviceSize sbtSize = m_rgenRegion.size + m_missRegion.size + m_hitRegion.size + m_callRegion.size;
m_rtSBTBuffer = m_alloc.createBuffer(sbtSize,
VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT
| VK_BUFFER_USAGE_SHADER_BINDING_TABLE_BIT_KHR,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
m_debug.setObjectName(m_rtSBTBuffer.buffer, std::string("SBT")); // Give it a debug name for NSight.
// Find the SBT addresses of each group
VkBufferDeviceAddressInfo info{VK_STRUCTURE_TYPE_BUFFER_DEVICE_ADDRESS_INFO, nullptr, m_rtSBTBuffer.buffer};
VkDeviceAddress sbtAddress = vkGetBufferDeviceAddress(m_device, &info);
m_rgenRegion.deviceAddress = sbtAddress;
m_missRegion.deviceAddress = sbtAddress + m_rgenRegion.size;
m_hitRegion.deviceAddress = sbtAddress + m_rgenRegion.size + m_missRegion.size;
// Helper to retrieve the handle data
auto getHandle = [&](int i) { return handles.data() + i * handleSize; };
// Map the SBT buffer and write in the handles.
auto* pSBTBuffer = reinterpret_cast<uint8_t*>(m_alloc.map(m_rtSBTBuffer));
uint8_t* pData{nullptr};
uint32_t handleIdx{0};
// Raygen
pData = pSBTBuffer;
memcpy(pData, getHandle(handleIdx++), handleSize);
// Miss
pData = pSBTBuffer + m_rgenRegion.size;
for(uint32_t c = 0; c < missCount; c++)
{
memcpy(pData, getHandle(handleIdx++), handleSize);
pData += m_missRegion.stride;
}
// Hit
pData = pSBTBuffer + m_rgenRegion.size + m_missRegion.size;
for(uint32_t c = 0; c < hitCount; c++)
{
memcpy(pData, getHandle(handleIdx++), handleSize);
pData += m_hitRegion.stride;
}
m_alloc.unmap(m_rtSBTBuffer);
m_alloc.finalizeAndReleaseStaging();
}
//--------------------------------------------------------------------------------------------------
// Ray Tracing the scene
//
void HelloVulkan::raytrace(const VkCommandBuffer& cmdBuf, const nvmath::vec4f& clearColor)
{
m_debug.beginLabel(cmdBuf, "Ray trace");
// Initializing push constant values
m_pcRay.clearColor = clearColor;
m_pcRay.lightPosition = m_pcRaster.lightPosition;
m_pcRay.lightIntensity = m_pcRaster.lightIntensity;
m_pcRay.lightType = m_pcRaster.lightType;
std::vector<VkDescriptorSet> descSets{m_rtDescSet, m_descSet};
vkCmdBindPipeline(cmdBuf, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, m_rtPipeline);
vkCmdBindDescriptorSets(cmdBuf, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, m_rtPipelineLayout, 0,
(uint32_t)descSets.size(), descSets.data(), 0, nullptr);
vkCmdPushConstants(cmdBuf, m_rtPipelineLayout,
VK_SHADER_STAGE_RAYGEN_BIT_KHR | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_MISS_BIT_KHR,
0, sizeof(PushConstantRay), &m_pcRay);
vkCmdTraceRaysKHR(cmdBuf, &m_rgenRegion, &m_missRegion, &m_hitRegion, &m_callRegion, m_size.width, m_size.height, 1);
m_debug.endLabel(cmdBuf);
}