-
Notifications
You must be signed in to change notification settings - Fork 1
/
hypergraph_generator_utils.py
141 lines (121 loc) · 4.6 KB
/
hypergraph_generator_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# coding=utf-8
# Copyright 2024 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""Random graph generation."""
import random
import networkx as nx
import numpy as np
import dhg
_NUMBER_OF_NODES_RANGE = {
"small": np.arange(5, 10),
"medium": np.arange(10, 15),
"large": np.arange(15, 20),
}
_NUMBER_OF_COMMUNITIES_RANGE = {
"small": np.arange(2, 4),
"medium": np.arange(2, 8),
"large": np.arange(2, 10),
}
def generate_graphs(
number_of_graphs,
algorithm,
directed,
random_seed = 1234,
er_min_sparsity = 0.0,
er_max_sparsity = 1.0,
):
"""Generating multiple graphs using the provided algorithms.
Args:
number_of_graphs: number of graphs to generate
algorithm: the random graph generator algorithm
directed: whether to generate directed or undirected graphs.
random_seed: the random seed to generate graphs with.
er_min_sparsity: minimum sparsity of er graphs.
er_max_sparsity: maximum sparsity of er graphs.
Returns:
generated_graphs: a list of nx graphs.
Raises:
NotImplementedError: if the algorithm is not yet implemented.
"""
random.seed(random_seed)
np.random.seed(random_seed)
generated_graphs = []
graph_sizes = random.choices(
list(_NUMBER_OF_NODES_RANGE.keys()), k=number_of_graphs
)
random_state = np.random.RandomState(random_seed)
if algorithm == 'hypergraph':
for i in range(number_of_graphs):
number_of_vertices = random.choice(_NUMBER_OF_NODES_RANGE[graph_sizes[i]])
number_of_hypedges = random.choice(range(int(number_of_vertices*0.2),int(number_of_vertices*1.5)))
sparsity = [random.uniform(er_min_sparsity, er_max_sparsity) for i in range(number_of_hypedges)]
generated_graphs.append(
dhg.random.hypergraph_Gnm(num_v=int(number_of_vertices),num_e=number_of_hypedges)
)
elif algorithm == "graph1":
for i in range(number_of_graphs):
number_of_vertices = random.choice(_NUMBER_OF_NODES_RANGE[graph_sizes[i]])
number_of_hypedges = random.choice(range(int(number_of_vertices*0.2),int(number_of_vertices*1.5))) # TODO 记得改点的数目和边的数目
prob_k_list = [0 for k in range(number_of_vertices-1)]
prob_k_list[0] = 1 #
generated_graphs.append(
dhg.random.hypergraph_Gnm(num_v=int(number_of_vertices),num_e=number_of_hypedges,method="custom",prob_k_list=prob_k_list)
)
elif algorithm == "graph2":
for i in range(number_of_graphs):
number_of_vertices = random.choice(np.arange(5, 10))
# number_of_vertices = random.choice(_NUMBER_OF_NODES_RANGE[graph_sizes[i]])
g = dhg.random.graph_Gnp(num_v=int(number_of_vertices),prob=random.random())
while len(g.e[0]) == 0:
g = dhg.random.graph_Gnp(num_v=int(number_of_vertices),prob=random.random())
g = dhg.structure.Hypergraph.from_graph(g)
generated_graphs.append(
g
)
elif algorithm == 'hypergraph_high':
for i in range(number_of_graphs):
number_of_vertices = random.choice(_NUMBER_OF_NODES_RANGE[graph_sizes[i]])
number_of_hypedges = random.choice(range(int(number_of_vertices*0.2),int(number_of_vertices*1.5)))
prob_k_list = [2 ** (-k) for k in range(number_of_vertices-1)]
generated_graphs.append(
dhg.random.hypergraph_Gnm(num_v=int(number_of_vertices),num_e=number_of_hypedges,method="custom",prob_k_list=prob_k_list)
)
else:
raise NotImplementedError()
return generated_graphs
def random_hypergraph(n,e,p,seed):
"""
n : number of vertices in hypergraph
e: number of hypedges in hypergraph
p: the probability of a vertex belong to a edges
"""
G = {}
G['vertex'] = list(range(n))
G['hypedges'] = []
for i in range(e):
edge = []
for vertex in range(n):
if seed.random() < p[i]:
edge.append(vertex)
if len(edge) > 0 and edge not in G['hypedges']:
G['hypedges'].append(edge)
return G
import pickle
def write_graph_pkl(HypeGraph,path):
with open(path, 'wb') as f:
pickle.dump(HypeGraph, f)
def load_graph_pkl(HypeGraph,path):
with open(path, 'rb') as f:
loaded_data = pickle.load(f)
return loaded_data