-
Notifications
You must be signed in to change notification settings - Fork 0
/
cifar10.yaml
60 lines (49 loc) · 1.68 KB
/
cifar10.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# @package _global_
# to execute this experiment run:
# python train.py experiment=generation/diffusion/train/cifar10
defaults:
- override /data: cifar10.yaml
- override /model: diffusion/diffusion_module.yaml
- override /callbacks: generation_diffusionn.yaml
- override /trainer: ddp.yaml
- override /logger: wandb.yaml
# all parameters below will be merged with parameters from default configurations set above
# this allows you to overwrite only specified parameters
seed: 12345
task_name: generation/diffusion/train
trainer:
max_epochs: 2000
devices: 1
check_val_every_n_epoch: 5
gradient_clip_val: 1.0
data:
batch_size: 128 # for 1 GPU 16G
num_workers: 10
model:
net:
img_dims:
- 3
- ${data.image_size}
- ${data.image_size}
denoise_net:
base_channels: 128
n_layer_blocks: 2
channel_multipliers: [1, 2, 2, 2]
attention: "Attn" # for cifar10 dataset
n_attention_heads: null
n_attention_layers: null
attention_levels: [1] # resolution 16
drop_rate: 0.1
logger:
wandb:
name: ${now:%Y-%m-%d}_${now:%H-%M-%S}
project: generation
tags: ${tags}
group: diffusion
id: null # pass correct id to resume experiment! (if ckpt_path is not null)
ckpt_path: null # simply provide checkpoint path to resume training
callbacks:
metrics:
metric_list:
- fid
- is