-
Notifications
You must be signed in to change notification settings - Fork 0
/
edge_coco.yaml
53 lines (42 loc) · 1.22 KB
/
edge_coco.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# @package _global_
# to execute this experiment run:
# python train.py experiment=generation/condition_diffusion/train/edge_coco
defaults:
- override /data: edge_coco.yaml
- override /model: diffusion/condition_diffusion_module.yaml
- override /callbacks: generation_diffusion.yaml
- override /trainer: ddp.yaml
- override /logger: wandb.yaml
# all parameters below will be merged with parameters from default configurations set above
# this allows you to overwrite only specified parameters
seed: 12345
task_name: "generation_diffusion/train"
trainer:
max_epochs: 2000
devices: 1
check_val_every_n_epoch: 5
gradient_clip_val: 1.0
data:
batch_size: 16
num_workers: 10
model:
net:
img_dims:
- 3
- ${data.image_size}
- ${data.image_size}
denoise_net:
base_channels: 128
channel_multipliers: [1, 2, 4, 4]
d_cond_image: 1 # edge image
logger:
wandb:
name: "${now:%Y-%m-%d}_${now:%H-%M-%S}"
project: "generation_diffusion"
tags: ${tags}
group: ${data.dataset_name}
id: null # pass correct id to resume experiment! (if ckpt_path is not null)
ckpt_path: null # simply provide checkpoint path to resume training
callbacks:
gen_sample:
grid_shape: [5, 5]