-
Notifications
You must be signed in to change notification settings - Fork 21
/
ReferFormer_dataset.py
252 lines (214 loc) · 9.47 KB
/
ReferFormer_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
###########################################################################
# Created by: NTU
# Email: [email protected]
# Copyright (c) 2023
###########################################################################
"""
MeViS data loader
"""
from pathlib import Path
import torch
# from torch.autograd.grad_mode import F
from torch.utils.data import Dataset
import datasets.transforms_video as T
import os
from PIL import Image
import json
import numpy as np
import random
from pycocotools import mask as coco_mask
class MeViSDataset(Dataset):
"""
A dataset class for the MeViS dataset which was first introduced in the paper:
"MeViS: A Large-scale Benchmark for Video Segmentation with Motion Expressions"
"""
def __init__(self, img_folder: Path, ann_file: Path, transforms, return_masks: bool,
num_frames: int, max_skip: int):
self.img_folder = img_folder
self.ann_file = ann_file
self._transforms = transforms
self.return_masks = return_masks # not used
self.num_frames = num_frames
self.max_skip = max_skip
# create video meta data
self.prepare_metas()
mask_json = os.path.join(str(self.img_folder) + '/mask_dict.json')
print(f'Loading masks form {mask_json} ...')
with open(mask_json) as fp:
self.mask_dict = json.load(fp)
print('\n video num: ', len(self.videos), ' clip num: ', len(self.metas))
print('\n')
def prepare_metas(self):
# read expression data
with open(str(self.ann_file), 'r') as f:
subset_expressions_by_video = json.load(f)['videos']
self.videos = list(subset_expressions_by_video.keys())
self.metas = []
for vid in self.videos:
# vid_meta = subset_metas_by_video[vid]
vid_data = subset_expressions_by_video[vid]
vid_frames = sorted(vid_data['frames'])
vid_len = len(vid_frames)
for exp_id, exp_dict in vid_data['expressions'].items():
for frame_id in range(0, vid_len, self.num_frames):
meta = {}
meta['video'] = vid
meta['exp'] = exp_dict['exp']
meta['obj_id'] = [int(x) for x in exp_dict['obj_id']]
meta['anno_id'] = [str(x) for x in exp_dict['anno_id']]
meta['frames'] = vid_frames
meta['frame_id'] = frame_id
meta['category'] = 0
self.metas.append(meta)
@staticmethod
def bounding_box(img):
rows = np.any(img, axis=1)
cols = np.any(img, axis=0)
rmin, rmax = np.where(rows)[0][[0, -1]]
cmin, cmax = np.where(cols)[0][[0, -1]]
return rmin, rmax, cmin, cmax # y1, y2, x1, x2
def __len__(self):
return len(self.metas)
def __getitem__(self, idx):
instance_check = False
while not instance_check:
meta = self.metas[idx] # dict
video, exp, anno_id, category, frames, frame_id = \
meta['video'], meta['exp'], meta['anno_id'], meta['category'], meta['frames'], meta['frame_id']
# clean up the caption
exp = " ".join(exp.lower().split())
category_id = 0
vid_len = len(frames)
num_frames = self.num_frames
# random sparse sample
sample_indx = [frame_id]
if self.num_frames != 1:
# local sample
sample_id_before = random.randint(1, 3)
sample_id_after = random.randint(1, 3)
local_indx = [max(0, frame_id - sample_id_before), min(vid_len - 1, frame_id + sample_id_after)]
sample_indx.extend(local_indx)
# global sampling
if num_frames > 3:
all_inds = list(range(vid_len))
global_inds = all_inds[:min(sample_indx)] + all_inds[max(sample_indx):]
global_n = num_frames - len(sample_indx)
if len(global_inds) > global_n:
select_id = random.sample(range(len(global_inds)), global_n)
for s_id in select_id:
sample_indx.append(global_inds[s_id])
elif vid_len >= global_n: # sample long range global frames
select_id = random.sample(range(vid_len), global_n)
for s_id in select_id:
sample_indx.append(all_inds[s_id])
else:
select_id = random.sample(range(vid_len), global_n - vid_len) + list(range(vid_len))
for s_id in select_id:
sample_indx.append(all_inds[s_id])
sample_indx.sort()
# read frames and masks
imgs, labels, boxes, masks, valid = [], [], [], [], []
for j in range(self.num_frames):
frame_indx = sample_indx[j]
frame_name = frames[frame_indx]
img_path = os.path.join(str(self.img_folder), 'JPEGImages', video, frame_name + '.jpg')
# mask_path = os.path.join(str(self.img_folder), 'Annotations', video, frame_name + '.png')
img = Image.open(img_path).convert('RGB')
# h, w = img.shape
mask = np.zeros(img.size[::-1], dtype=np.float32)
for x in anno_id:
frm_anno = self.mask_dict[x][frame_indx]
if frm_anno is not None:
mask += coco_mask.decode(frm_anno)
# create the target
label = torch.tensor(category_id)
if (mask > 0).any():
y1, y2, x1, x2 = self.bounding_box(mask)
box = torch.tensor([x1, y1, x2, y2]).to(torch.float)
valid.append(1)
else: # some frame didn't contain the instance
box = torch.tensor([0, 0, 0, 0]).to(torch.float)
valid.append(0)
mask = torch.from_numpy(mask)
# append
imgs.append(img)
labels.append(label)
masks.append(mask)
boxes.append(box)
# transform
w, h = img.size
labels = torch.stack(labels, dim=0)
boxes = torch.stack(boxes, dim=0)
boxes[:, 0::2].clamp_(min=0, max=w)
boxes[:, 1::2].clamp_(min=0, max=h)
masks = torch.stack(masks, dim=0)
target = {
'frames_idx': torch.tensor(sample_indx), # [T,]
'labels': labels, # [T,]
'boxes': boxes, # [T, 4], xyxy
'masks': masks, # [T, H, W]
'valid': torch.tensor(valid), # [T,]
'caption': exp,
'orig_size': torch.as_tensor([int(h), int(w)]),
'size': torch.as_tensor([int(h), int(w)])
}
# "boxes" normalize to [0, 1] and transform from xyxy to cxcywh in self._transform
imgs, target = self._transforms(imgs, target)
imgs = torch.stack(imgs, dim=0) # [T, 3, H, W]
# FIXME: handle "valid", since some box may be removed due to random crop
if torch.any(target['valid'] == 1): # at leatst one instance
instance_check = True
else:
idx = random.randint(0, self.__len__() - 1)
return imgs, target
def make_coco_transforms(image_set, max_size=640):
normalize = T.Compose([
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
scales = [288, 320, 352, 392, 416, 448, 480, 512]
if image_set == 'train':
return T.Compose([
T.RandomHorizontalFlip(),
T.PhotometricDistort(),
T.RandomSelect(
T.Compose([
T.RandomResize(scales, max_size=max_size),
T.Check(),
]),
T.Compose([
T.RandomResize([400, 500, 600]),
T.RandomSizeCrop(384, 600),
T.RandomResize(scales, max_size=max_size),
T.Check(),
])
),
normalize,
])
# we do not use the 'val' set since the annotations are inaccessible
if image_set == 'val':
return T.Compose([
T.RandomResize([360], max_size=640),
normalize,
])
raise ValueError(f'unknown {image_set}')
def build(image_set, args):
root = Path(args.rovos_path)
assert root.exists(), f'provided YTVOS path {root} does not exist'
PATHS = {
"train": (root / "train", root / "train" / "meta_expressions.json"),
"val": (root / "valid", root / "meta_expressions" / "val" / "meta_expressions.json"), # not used actually
}
img_folder, ann_file = PATHS['train']
dataset = ROVOSDataset(img_folder, ann_file, transforms=make_coco_transforms(image_set, max_size=args.max_size), return_masks=args.masks,
num_frames=args.num_frames, max_skip=args.max_skip)
return dataset
if __name__ == '__main__':
root = Path('data/mevis_release')
image_set = 'train'
PATHS = {
"train": (root / "train", root / "train" / "meta_expressions.json"),
}
img_folder, ann_file = PATHS['train']
dataset = ROVOSDataset(img_folder, ann_file, transforms=T.ToTensor(), return_masks=True, num_frames=5, max_skip=3)
img, meta = dataset[0]