Skip to content

Latest commit

 

History

History
79 lines (66 loc) · 5.14 KB

overview.md

File metadata and controls

79 lines (66 loc) · 5.14 KB

Metadata Overview

library(tidyverse)
library(knitr)
df_exp <- read_csv('data/experiments.csv', col_types=list())
df_kwd <- read_csv('data/keywords.csv', col_types=list())
df_fcs <- read_csv('data/fcs_files.csv', col_types=list())
df_chl <- read_csv('data/fcs_channels_resolved.csv', col_types=list())
set.seed(1)
df_exp %>% select(-attachments) %>% sample_n(5) %>% kable()
exp_id exp_name investigators researchers n_fcs_files_total n_fcs_files_parse
FR-FCM-ZZCB Effect of monensin on IFNg mRNA and Protein expression Emily Park Chip Lomas 12 12
FR-FCM-ZZG6 data analysis activated sludge Susanne Günther Susanne Günther 10 10
FR-FCM-ZZUE B-1 phenotype of peripheral CD19+ Mac-1+ B cells of a representative recipient of DL1-Fc 2.5-activated ESC-HSC_Fig.1E, S1B, S2A-B yifen lu yifen lu 32 30
FR-FCM-ZYWC BRAF and MEK inhibitor therapy eliminates nestin expressing melanoma cells in human tumors Experiment 5 (Additional Therapy Naive Patients All Cells) Jonathan Irish Deon Doxie 3 3
FR-FCM-ZZ8P Figure 1-B Autophagy Sonication Kui Lin Michael Degtyarev 84 30
df_kwd %>% sample_n(5) %>% kable()
exp_id keyword
FR-FCM-ZYHL automated data analysis
FR-FCM-ZYMF mass cytometry
FR-FCM-ZZVF FACSDiva
FR-FCM-ZZU7 Silver nanoparticles
FR-FCM-ZZ3L fluorescence
df_fcs %>% sample_n(5) %>% kable()
exp_id version filename size creator n_params
FR-FCM-ZZ8S FCS3.0 DMSO_D1_D01.fcs 239547 NA 5
FR-FCM-ZZ7U FCS3.0 768243.fcs 15093818 BD FACSDiva Software Version 6.1.1 16
FR-FCM-ZY6D FCS3.0 Compensation Controls_APC Stained Control_008.fcs 282686 BD FACSDiva Software Version 8.0.1 14
FR-FCM-ZZFM FCS2.0 TS22 652 P6…Live.fcs 24509776 FlowJo 22
FR-FCM-ZYAY FCS2.0 Donor9 NK phenoD4_TW NK+IL-2 mixA 004.LMD 107989 NA 13
df_chl %>% sample_n(5) %>% kable()
param_channel param_name filename exp_id term precedence param resolution
Time NA AJO 3min no tto_0 min PETG.fcs FR-FCM-ZY2D TIME 3 Time lookup
Tm169Di 169Tm_ICOS 081216-Mike-HIMC ctrls-885d4_01_1.fcs FR-FCM-ZYAJ ICOS 5 CD278 lookup
Yb171Di 171Yb_CD27 Plate 8_9.fcs FR-FCM-ZYT6 CD27 5 CD27 lookup
Y4-A PE-Vio770-A A555_Acceptor.fcs FR-FCM-ZZR6 NA 6 PE-Vio770-A original
Xe131Di 131Xe Clambey LO 11022016 IL10 KO lung 4_01.fcs FR-FCM-ZYDW NA 6 131Xe original
df_chl %>% 
  # Ignore any parameter names that couldn't be matched (results are too messy otherwise)
  filter(resolution == 'lookup') %>%
  
  # Get distinct set of experiment ids and parameter names
  group_by(exp_id, param) %>% tally %>% select(-n) %>% ungroup %>%
  
  # Count and plot parameter frequencies
  group_by(param) %>% tally %>% arrange(desc(n)) %>% head(100) %>%
  mutate(param=reorder(param, -n)) %>%
  ggplot(aes(x=param, y=n)) + geom_bar(stat='identity') + 
  labs(x='Parameter', y='Num Datasets', title='Top 100 Parameters') +
  theme_bw() +
  theme(axis.text.x = element_text(angle = 90, hjust = 1))