-
Notifications
You must be signed in to change notification settings - Fork 14
/
colorize3_poisson.py
473 lines (398 loc) · 17.4 KB
/
colorize3_poisson.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt
import scipy.interpolate as si
import scipy.ndimage as scim
import scipy.ndimage.interpolation as sii
import os
import os.path as osp
# import cPickle as cp
import _pickle as cp
# import Image
from PIL import Image
from poisson_reconstruct import blit_images
import pickle
def sample_weighted(p_dict):
ps = p_dict.keys()
return ps[np.random.choice(len(ps), p=p_dict.values())]
class Layer(object):
def __init__(self, alpha, color):
# alpha for the whole image:
assert alpha.ndim == 2
self.alpha = alpha
[n, m] = alpha.shape[:2]
color = np.atleast_1d(np.array(color)).astype('uint8')
# color for the image:
if color.ndim == 1: # constant color for whole layer
ncol = color.size
if ncol == 1: # grayscale layer
self.color = color * np.ones((n, m, 3), 'uint8')
if ncol == 3:
self.color = np.ones((n, m, 3), 'uint8') * color[None, None, :]
elif color.ndim == 2: # grayscale image
self.color = np.repeat(color[:, :, None], repeats=3, axis=2).copy().astype('uint8')
elif color.ndim == 3: # rgb image
self.color = color.copy().astype('uint8')
else:
print(color.shape)
raise Exception("color datatype not understood")
class FontColor(object):
def __init__(self, col_file):
with open(col_file, 'rb') as f:
# self.colorsRGB = cp.load(f)
u = pickle._Unpickler(f)
u.encoding = 'latin1'
p = u.load()
self.colorsRGB = p
self.ncol = self.colorsRGB.shape[0]
# convert color-means from RGB to LAB for better nearest neighbour
# computations:
self.colorsLAB = np.r_[self.colorsRGB[:, 0:3], self.colorsRGB[:, 6:9]].astype('uint8')
self.colorsLAB = np.squeeze(cv.cvtColor(self.colorsLAB[None, :, :], cv.COLOR_RGB2Lab))
def sample_normal(self, col_mean, col_std):
"""
sample from a normal distribution centered around COL_MEAN
with standard deviation = COL_STD.
"""
col_sample = col_mean + col_std * np.random.randn()
return np.clip(col_sample, 0, 255).astype('uint8')
def sample_from_data(self, bg_mat):
"""
bg_mat : this is a nxmx3 RGB image.
returns a tuple : (RGB_foreground, RGB_background)
each of these is a 3-vector.
"""
bg_orig = bg_mat.copy()
bg_mat = cv.cvtColor(bg_mat, cv.COLOR_RGB2Lab)
bg_mat = np.reshape(bg_mat, (np.prod(bg_mat.shape[:2]), 3))
bg_mean = np.mean(bg_mat, axis=0)
norms = np.linalg.norm(self.colorsLAB - bg_mean[None, :], axis=1)
# choose a random color amongst the top 3 closest matches:
# nn = np.random.choice(np.argsort(norms)[:3])
nn = np.argmin(norms)
## nearest neighbour color:
data_col = self.colorsRGB[np.mod(nn, self.ncol), :]
col1 = self.sample_normal(data_col[:3], data_col[3:6])
col2 = self.sample_normal(data_col[6:9], data_col[9:12])
if nn < self.ncol:
return (col2, col1)
else:
# need to swap to make the second color close to the input backgroun color
return (col1, col2)
def mean_color(self, arr):
col = cv.cvtColor(arr, cv.COLOR_RGB2HSV)
col = np.reshape(col, (np.prod(col.shape[:2]), 3))
col = np.mean(col, axis=0).astype('uint8')
return np.squeeze(cv.cvtColor(col[None, None, :], cv.COLOR_HSV2RGB))
def invert(self, rgb):
rgb = 127 + rgb
return rgb
def complement(self, rgb_color):
"""
return a color which is complementary to the RGB_COLOR.
"""
col_hsv = np.squeeze(cv.cvtColor(rgb_color[None, None, :], cv.COLOR_RGB2HSV))
col_hsv[0] = col_hsv[0] + 128 # uint8 mods to 255
col_comp = np.squeeze(cv.cvtColor(col_hsv[None, None, :], cv.COLOR_HSV2RGB))
return col_comp
def triangle_color(self, col1, col2):
"""
Returns a color which is "opposite" to both col1 and col2.
"""
col1, col2 = np.array(col1), np.array(col2)
col1 = np.squeeze(cv.cvtColor(col1[None, None, :], cv.COLOR_RGB2HSV))
col2 = np.squeeze(cv.cvtColor(col2[None, None, :], cv.COLOR_RGB2HSV))
h1, h2 = col1[0], col2[0]
if h2 < h1: h1, h2 = h2, h1 # swap
dh = h2 - h1
if dh < 127: dh = 255 - dh
col1[0] = h1 + dh / 2
return np.squeeze(cv.cvtColor(col1[None, None, :], cv.COLOR_HSV2RGB))
def change_value(self, col_rgb, v_std=50):
col = np.squeeze(cv.cvtColor(col_rgb[None, None, :], cv.COLOR_RGB2HSV))
x = col[2]
vs = np.linspace(0, 1)
ps = np.abs(vs - x / 255.0)
ps /= np.sum(ps)
v_rand = np.clip(np.random.choice(vs, p=ps) + 0.1 * np.random.randn(), 0, 1)
col[2] = 255 * v_rand
return np.squeeze(cv.cvtColor(col[None, None, :], cv.COLOR_HSV2RGB))
class Colorize(object):
def __init__(self, model_dir='data'): # , im_path):
# # get a list of background-images:
# imlist = [osp.join(im_path,f) for f in os.listdir(im_path)]
# self.bg_list = [p for p in imlist if osp.isfile(p)]
self.font_color = FontColor(col_file=osp.join(model_dir, 'models/colors_new.cp'))
# probabilities of different text-effects:
self.p_bevel = 0.05 # add bevel effect to text
self.p_outline = 0.05 # just keep the outline of the text
self.p_drop_shadow = 0.15
self.p_border = 0.15
self.p_displacement = 0.30 # add background-based bump-mapping
self.p_texture = 0.0 # use an image for coloring text
def drop_shadow(self, alpha, theta, shift, size, op=0.80):
"""
alpha : alpha layer whose shadow need to be cast
theta : [0,2pi] -- the shadow direction
shift : shift in pixels of the shadow
size : size of the GaussianBlur filter
op : opacity of the shadow (multiplying factor)
@return : alpha of the shadow layer
(it is assumed that the color is black/white)
"""
if size % 2 == 0:
size -= 1
size = max(1, size)
shadow = cv.GaussianBlur(alpha, (size, size), 0)
[dx, dy] = shift * np.array([-np.sin(theta), np.cos(theta)])
shadow = op * sii.shift(shadow, shift=[dx, dy], mode='constant', cval=0)
return shadow.astype('uint8')
def border(self, alpha, size, kernel_type='RECT'):
"""
alpha : alpha layer of the text
size : size of the kernel
kernel_type : one of [rect,ellipse,cross]
@return : alpha layer of the border (color to be added externally).
"""
kdict = {'RECT': cv.MORPH_RECT, 'ELLIPSE': cv.MORPH_ELLIPSE,
'CROSS': cv.MORPH_CROSS}
kernel = cv.getStructuringElement(kdict[kernel_type], (size, size))
border = cv.dilate(alpha, kernel, iterations=1) # - alpha
return border
def blend(self, cf, cb, mode='normal'):
return cf
def merge_two(self, fore, back, blend_type=None):
"""
merge two FOREground and BACKground layers.
ref: https://en.wikipedia.org/wiki/Alpha_compositing
ref: Chapter 7 (pg. 440 and pg. 444):
http://partners.adobe.com/public/developer/en/pdf/PDFReference.pdf
"""
a_f = fore.alpha / 255.0
a_b = back.alpha / 255.0
c_f = fore.color
c_b = back.color
a_r = a_f + a_b - a_f * a_b
if blend_type != None:
c_blend = self.blend(c_f, c_b, blend_type)
c_r = (((1 - a_f) * a_b)[:, :, None] * c_b
+ ((1 - a_b) * a_f)[:, :, None] * c_f
+ (a_f * a_b)[:, :, None] * c_blend)
else:
c_r = (((1 - a_f) * a_b)[:, :, None] * c_b
+ a_f[:, :, None] * c_f)
return Layer((255 * a_r).astype('uint8'), c_r.astype('uint8'))
def merge_down(self, layers, blends=None):
"""
layers : [l1,l2,...ln] : a list of LAYER objects.
l1 is on the top, ln is the bottom-most layer.
blend : the type of blend to use. Should be n-1.
use None for plain alpha blending.
Note : (1) it assumes that all the layers are of the SAME SIZE.
@return : a single LAYER type object representing the merged-down image
"""
nlayers = len(layers)
if nlayers > 1:
[n, m] = layers[0].alpha.shape[:2]
out_layer = layers[-1]
for i in range(-2, -nlayers - 1, -1):
blend = None
if blends is not None:
blend = blends[i + 1]
out_layer = self.merge_two(fore=layers[i], back=out_layer, blend_type=blend)
return out_layer
else:
return layers[0]
def resize_im(self, im, osize):
return np.array(Image.fromarray(im).resize(osize[::-1], Image.BICUBIC))
def occlude(self):
"""
somehow add occlusion to text.
"""
pass
def color_border(self, col_text, col_bg):
"""
Decide on a color for the border:
- could be the same as text-color but lower/higher 'VALUE' component.
- could be the same as bg-color but lower/higher 'VALUE'.
- could be 'mid-way' color b/w text & bg colors.
"""
choice = np.random.choice(3)
col_text = cv.cvtColor(col_text, cv.COLOR_RGB2HSV)
col_text = np.reshape(col_text, (np.prod(col_text.shape[:2]), 3))
col_text = np.mean(col_text, axis=0).astype('uint8')
vs = np.linspace(0, 1)
def get_sample(x):
ps = np.abs(vs - x / 255.0)
ps /= np.sum(ps)
v_rand = np.clip(np.random.choice(vs, p=ps) + 0.1 * np.random.randn(), 0, 1)
return 255 * v_rand
# first choose a color, then inc/dec its VALUE:
if choice == 0:
# increase/decrease saturation:
col_text[0] = get_sample(col_text[0]) # saturation
col_text = np.squeeze(cv.cvtColor(col_text[None, None, :], cv.COLOR_HSV2RGB))
elif choice == 1:
# get the complementary color to text:
col_text = np.squeeze(cv.cvtColor(col_text[None, None, :], cv.COLOR_HSV2RGB))
col_text = self.font_color.complement(col_text)
else:
# choose a mid-way color:
col_bg = cv.cvtColor(col_bg, cv.COLOR_RGB2HSV)
col_bg = np.reshape(col_bg, (np.prod(col_bg.shape[:2]), 3))
col_bg = np.mean(col_bg, axis=0).astype('uint8')
col_bg = np.squeeze(cv.cvtColor(col_bg[None, None, :], cv.COLOR_HSV2RGB))
col_text = np.squeeze(cv.cvtColor(col_text[None, None, :], cv.COLOR_HSV2RGB))
col_text = self.font_color.triangle_color(col_text, col_bg)
# now change the VALUE channel:
col_text = np.squeeze(cv.cvtColor(col_text[None, None, :], cv.COLOR_RGB2HSV))
col_text[2] = get_sample(col_text[2]) # value
return np.squeeze(cv.cvtColor(col_text[None, None, :], cv.COLOR_HSV2RGB))
def color_text(self, text_arr, h, bg_arr):
"""
Decide on a color for the text:
- could be some other random image.
- could be a color based on the background.
this color is sampled from a dictionary built
from text-word images' colors. The VALUE channel
is randomized.
H : minimum height of a character
"""
bg_col, fg_col, i = 0, 0, 0
fg_col, bg_col = self.font_color.sample_from_data(bg_arr)
return Layer(alpha=text_arr, color=fg_col), fg_col, bg_col
def process(self, text_arr, bg_arr, min_h):
"""
text_arr : one alpha mask : nxm, uint8
bg_arr : background image: nxmx3, uint8
min_h : height of the smallest character (px)
return text_arr blit onto bg_arr.
"""
# decide on a color for the text:
l_text, fg_col, bg_col = self.color_text(text_arr, min_h, bg_arr)
bg_col = np.mean(np.mean(bg_arr, axis=0), axis=0)
l_bg = Layer(alpha=255 * np.ones_like(text_arr, 'uint8'), color=bg_col)
l_text.alpha = l_text.alpha * np.clip(0.88 + 0.1 * np.random.randn(), 0.72, 1.0)
layers = [l_text]
blends = []
# add border:
if np.random.rand() < self.p_border:
if min_h <= 15:
bsz = 1
elif 15 < min_h < 30:
bsz = 3
else:
bsz = 5
border_a = self.border(l_text.alpha, size=bsz)
l_border = Layer(border_a, self.color_border(l_text.color, l_bg.color))
layers.append(l_border)
blends.append('normal')
# add shadow:
if np.random.rand() < self.p_drop_shadow:
# shadow gaussian size:
if min_h <= 15:
bsz = 1
elif 15 < min_h < 30:
bsz = 3
else:
bsz = 5
# shadow angle:
theta = np.pi / 4 * np.random.choice([1, 3, 5, 7]) + 0.5 * np.random.randn()
# shadow shift:
if min_h <= 15:
shift = 2
elif 15 < min_h < 30:
shift = 7 + np.random.randn()
else:
shift = 15 + 3 * np.random.randn()
# opacity:
op = 0.50 + 0.1 * np.random.randn()
shadow = self.drop_shadow(l_text.alpha, theta, shift, 3 * bsz, op)
l_shadow = Layer(shadow, 0)
layers.append(l_shadow)
blends.append('normal')
l_bg = Layer(alpha=255 * np.ones_like(text_arr, 'uint8'), color=bg_col)
layers.append(l_bg)
blends.append('normal')
l_normal = self.merge_down(layers, blends)
# now do poisson image editing:
l_bg = Layer(alpha=255 * np.ones_like(text_arr, 'uint8'), color=bg_arr)
l_out = blit_images(l_normal.color, l_bg.color.copy())
# plt.subplot(1,3,1)
# plt.imshow(l_normal.color)
# plt.subplot(1,3,2)
# plt.imshow(l_bg.color)
# plt.subplot(1,3,3)
# plt.imshow(l_out)
# plt.show()
if l_out is None:
# poisson recontruction produced
# imperceptible text. In this case,
# just do a normal blend:
layers[-1] = l_bg
return self.merge_down(layers, blends).color
return l_out
def check_perceptible(self, txt_mask, bg, txt_bg):
"""
--- DEPRECATED; USE GRADIENT CHECKING IN POISSON-RECONSTRUCT INSTEAD ---
checks if the text after merging with background
is still visible.
txt_mask (hxw) : binary image of text -- 255 where text is present
0 elsewhere
bg (hxwx3) : original background image WITHOUT any text.
txt_bg (hxwx3) : image with text.
"""
bgo, txto = bg.copy(), txt_bg.copy()
txt_mask = txt_mask.astype('bool')
bg = cv.cvtColor(bg.copy(), cv.COLOR_RGB2Lab)
txt_bg = cv.cvtColor(txt_bg.copy(), cv.COLOR_RGB2Lab)
bg_px = bg[txt_mask, :]
txt_px = txt_bg[txt_mask, :]
bg_px[:, 0] *= 100.0 / 255.0 # rescale - L channel
txt_px[:, 0] *= 100.0 / 255.0
diff = np.linalg.norm(bg_px - txt_px, ord=None, axis=1)
diff = np.percentile(diff, [10, 30, 50, 70, 90])
print("color diff percentile :", diff)
return diff, (bgo, txto)
def color(self, bg_arr, text_arr, hs, place_order=None, pad=20):
"""
Return colorized text image.
text_arr : list of (n x m) numpy text alpha mask (unit8).
hs : list of minimum heights (scalar) of characters in each text-array.
text_loc : [row,column] : location of text in the canvas.
canvas_sz : size of canvas image.
return : nxmx3 rgb colorized text-image.
"""
bg_arr = bg_arr.copy()
if bg_arr.ndim == 2 or bg_arr.shape[2] == 1: # grayscale image:
bg_arr = np.repeat(bg_arr[:, :, None], 3, 2)
# get the canvas size:
canvas_sz = np.array(bg_arr.shape[:2])
# initialize the placement order:
if place_order is None:
place_order = np.array(range(len(text_arr)))
rendered = []
for i in place_order[::-1]:
# get the "location" of the text in the image:
## this is the minimum x and y coordinates of text:
loc = np.where(text_arr[i])
lx, ly = np.min(loc[0]), np.min(loc[1])
mx, my = np.max(loc[0]), np.max(loc[1])
l = np.array([lx, ly])
m = np.array([mx, my]) - l + 1
text_patch = text_arr[i][l[0]:l[0] + m[0], l[1]:l[1] + m[1]]
# figure out padding:
ext = canvas_sz - (l + m)
num_pad = pad * np.ones(4, dtype='int32')
num_pad[:2] = np.minimum(num_pad[:2], l)
num_pad[2:] = np.minimum(num_pad[2:], ext)
text_patch = np.pad(text_patch, pad_width=((num_pad[0], num_pad[2]), (num_pad[1], num_pad[3])),
mode='constant')
l -= num_pad[:2]
w, h = text_patch.shape
bg = bg_arr[l[0]:l[0] + w, l[1]:l[1] + h, :]
rdr0 = self.process(text_patch, bg, hs[i])
rendered.append(rdr0)
bg_arr[l[0]:l[0] + w, l[1]:l[1] + h, :] = rdr0 # rendered[-1]
return bg_arr
return bg_arr