forked from freder/cinemetrics
-
Notifications
You must be signed in to change notification settings - Fork 0
/
03_3_movie-colors.py
147 lines (116 loc) · 3.57 KB
/
03_3_movie-colors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# -*- coding: utf-8 -*-
import cv
import os
import os.path
import sys
import numpy
import scipy
import scipy.cluster
import math
#from lib import hls_sort
from colormath.color_objects import HSLColor, RGBColor
def difference(a, b): # HLS
print a, b
#c1 = HSLColor(hsl_h = a[0], hsl_s = a[2]/100.0, hsl_l = a[1]/100.0)
#c2 = HSLColor(hsl_h = b[0], hsl_s = a[2]/100.0, hsl_l = a[1]/100.0)
c1 = RGBColor(a[0], a[1], a[2])
c2 = RGBColor(b[0], b[1], b[2])
#c1.convert_to('lab')
#c2.convert_to('lab')
print c1.delta_e(c2)
return c1.delta_e(c2)
#import grapefruit
#def difference(a, b):
# c1 = grapefruit.Color.NewFromHsl(a[0], a[2], a[1])
# c2 = grapefruit.Color.NewFromHsl(b[0], b[2], b[1])
# return 1
def sort_by_distance(colors):
# Find the darkest color in the list.
root = colors[0]
for color in colors[1:]:
if color[1] < root[1]: # l
root = color
# Remove the darkest color from the stack,
# put it in the sorted list as starting element.
stack = [color for color in colors]
stack.remove(root)
sorted = [root]
# Now find the color in the stack closest to that color.
# Take this color from the stack and add it to the sorted list.
# Now find the color closest to that color, etc.
while len(stack) > 1:
closest, distance = stack[0], difference(stack[0], sorted[-1])
for clr in stack[1:]:
d = difference(clr, sorted[-1])
if d < distance:
closest, distance = clr, d
stack.remove(closest)
sorted.append(closest)
sorted.append(stack[0])
return sorted
WIDTH = 1000
OUTPUT_DIR_NAME = "shot_colors"
def main():
project_root_dir = sys.argv[1]
os.chdir(project_root_dir)
os.chdir(os.path.join(OUTPUT_DIR_NAME, OUTPUT_DIR_NAME))
output_img = cv.CreateImage((WIDTH, WIDTH), cv.IPL_DEPTH_8U, 3)
print os.system("identify -format \"%k\" result.png")
print "reducing colors to 10"
os.system("convert result.png +dither -colors 10 result_quant.png")
img_orig = cv.LoadImageM("result_quant.png")
output_img = cv.CreateImage((WIDTH, WIDTH), cv.IPL_DEPTH_8U, 3)
img_hls = cv.CreateImage(cv.GetSize(img_orig), cv.IPL_DEPTH_8U, 3)
cv.CvtColor(img_orig, img_hls, cv.CV_BGR2HLS)
pixels = numpy.asarray(cv.GetMat(img_hls))
d = {}
print "counting..."
for line in pixels:
for px in line:
if tuple(px) in d:
d[tuple(px)] += 1
else:
d[tuple(px)] = 1
colors = d.keys()
#print "%d pixels, %d colors" % (img_orig.width*img_orig.height, len(colors))
print "sorting..."
#colors.sort(hls_sort)
colors = sort_by_distance(colors)
px_count = img_orig.width * img_orig.height
x_pos = 0
print "building image..."
for color in colors:
l = d[color] / float(px_count)
l = int(math.ceil( l*WIDTH ))
for x in range(l):
if x_pos+x >= WIDTH:
break
for y in range(WIDTH):
cv.Set2D(output_img, y, x_pos+x, (int(color[0]), int(color[1]), int(color[2])))
x_pos += l
print "saving..."
output_img_rgb = cv.CreateImage(cv.GetSize(output_img), cv.IPL_DEPTH_8U, 3)
cv.CvtColor(output_img, output_img_rgb, cv.CV_HLS2BGR)
cv.SaveImage("_RESULT.png", output_img_rgb)
os.chdir( r"..\.." )
f = open("colors.txt", "w")
row = cv.GetRow(output_img_rgb, 0)
counter = 0
last_px = cv.Get1D(row, 0)
for i in range(WIDTH):
px = cv.Get1D(row, i)
if px == last_px:
counter += 1
if i == WIDTH-1:
f.write("%d, %d, %d, %d\n" % (int(last_px[2]), int(last_px[1]), int(last_px[0]), counter))
continue
else:
f.write("%d, %d, %d, %d\n" % (int(last_px[2]), int(last_px[1]), int(last_px[0]), counter))
counter = 1
last_px = px
f.close()
return
# #########################
if __name__ == "__main__":
main()
# #########################