forked from freder/cinemetrics
-
Notifications
You must be signed in to change notification settings - Fork 0
/
03_1_shot-colors.py
158 lines (121 loc) · 3.87 KB
/
03_1_shot-colors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# -*- coding: utf-8 -*-
import cv
import numpy
import scipy.cluster
import os
import sys
import xml.etree.ElementTree as et
import time
import math
from lib import hls_sort2
def unique(seq, idfun=None):
if idfun is None:
def idfun(x): return x
seen = {}
result = []
for item in seq:
marker = idfun(item)
if marker in seen: continue
seen[marker] = 1
result.append(item)
return result
def unique2(seq):
checked = []
for e in seq:
if e not in checked:
checked.append(e)
return checked
DEBUG = False
NUM_CLUSTERS = 5
PIXELS_PER_COLOR = 20
EVERY_NTH_FRAME = 5
OUTPUT_DIR_NAME = "shot_colors"
def main():
os.chdir(sys.argv[1])
try:
os.mkdir(OUTPUT_DIR_NAME)
except:
pass
tree = et.parse("project.xml")
movie = tree.getroot()
file_path = movie.attrib["path"]
cap = cv.CreateFileCapture(file_path)
cv.QueryFrame(cap)
# skip frames in the beginning, if neccessary
start_frame = int( movie.attrib["start_frame"] )
for i in range(start_frame):
cv.QueryFrame(cap)
if DEBUG:
cv.NamedWindow("win", cv.CV_WINDOW_AUTOSIZE)
cv.MoveWindow("win", 200, 200)
t = time.time()
f = open("shots.txt", "r")
scene_durations = [int(values[2]) for values in [line.split("\t") for line in f if line]]
f.close()
for scene_nr, duration in enumerate(scene_durations):
print "shot #%d" % scene_nr, "/", len(scene_durations)-1
h = int( math.ceil( float(duration) / EVERY_NTH_FRAME ) )
output_img = cv.CreateImage((PIXELS_PER_COLOR*NUM_CLUSTERS, h), cv.IPL_DEPTH_8U, 3)
frame_counter = 0
for i in range(duration):
img_orig = cv.QueryFrame(cap)
if not img_orig: # eof
break
if i % EVERY_NTH_FRAME != 0:
continue
new_width = int(img_orig.width/4.0)
new_height = int(img_orig.height/4.0)
img_small = cv.CreateImage((new_width, new_height), cv.IPL_DEPTH_8U, 3)
cv.Resize(img_orig, img_small, cv.CV_INTER_AREA)
if DEBUG:
cv.ShowImage("win", img_small)
img = cv.CreateImage((new_width, new_height), cv.IPL_DEPTH_8U, 3)
cv.CvtColor(img_small, img, cv.CV_BGR2HLS)
# convert to numpy array
a = numpy.asarray(cv.GetMat(img))
a = a.reshape(a.shape[0] * a.shape[1], a.shape[2]) # make it 1-dimensional
# set initial centroids
init_cluster = []
for y in [int(new_height/4.0), int(new_height*3/4.0)]:
for x in [int(new_width*f) for f in [0.25, 0.75]]:
init_cluster.append(a[y * new_width + x])
init_cluster.insert(2, a[int(new_height/2.0) * new_width + int(new_width/2.0)])
centroids, labels = scipy.cluster.vq.kmeans2(a, numpy.array(init_cluster))
vecs, dist = scipy.cluster.vq.vq(a, centroids) # assign codes
counts, bins = scipy.histogram(vecs, len(centroids)) # count occurrences
centroid_count = []
for i, count in enumerate(counts):
#print centroids[i], count
if count > 0:
centroid_count.append((centroids[i].tolist(), count))
#centroids = centroids.tolist()
#centroids.sort(hls_sort)
centroid_count.sort(hls_sort2)
px_count = new_width * new_height
x = 0
for item in centroid_count:
count = item[1] * (PIXELS_PER_COLOR*NUM_CLUSTERS)
count = int(math.ceil(count / float(px_count)))
centroid = item[0]
for l in range(count):
if x+l >= PIXELS_PER_COLOR*NUM_CLUSTERS:
break
cv.Set2D(output_img, frame_counter, x+l, (centroid[0], centroid[1], centroid[2]))
x += count
if DEBUG:
if cv.WaitKey(1) == 27:
cv.DestroyWindow("win");
return
frame_counter += 1
output_img_rgb = cv.CreateImage(cv.GetSize(output_img), cv.IPL_DEPTH_8U, 3)
cv.CvtColor(output_img, output_img_rgb, cv.CV_HLS2BGR)
cv.SaveImage(OUTPUT_DIR_NAME + "\\shot_colors_%04d.png" % (scene_nr), output_img_rgb)
if DEBUG:
cv.DestroyWindow("win");
print "%.2f min" % ((time.time()-t) / 60)
#raw_input("- done -")
return
# #########################
if __name__ == "__main__":
main()
# #########################