forked from dgraph-io/badger
-
Notifications
You must be signed in to change notification settings - Fork 0
/
db.go
1279 lines (1141 loc) · 33.8 KB
/
db.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright 2017 Dgraph Labs, Inc. and Contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package badger
import (
"bytes"
"encoding/binary"
"expvar"
"math"
"os"
"path/filepath"
"strconv"
"sync"
"sync/atomic"
"time"
"github.com/dgraph-io/badger/options"
"github.com/dgraph-io/badger/skl"
"github.com/dgraph-io/badger/table"
"github.com/dgraph-io/badger/y"
"github.com/pkg/errors"
"golang.org/x/net/trace"
)
var (
badgerPrefix = []byte("!badger!") // Prefix for internal keys used by badger.
head = []byte("!badger!head") // For storing value offset for replay.
txnKey = []byte("!badger!txn") // For indicating end of entries in txn.
badgerMove = []byte("!badger!move") // For key-value pairs which got moved during GC.
)
type closers struct {
updateSize *y.Closer
compactors *y.Closer
memtable *y.Closer
writes *y.Closer
valueGC *y.Closer
}
// DB provides the various functions required to interact with Badger.
// DB is thread-safe.
type DB struct {
sync.RWMutex // Guards list of inmemory tables, not individual reads and writes.
dirLockGuard *directoryLockGuard
// nil if Dir and ValueDir are the same
valueDirGuard *directoryLockGuard
closers closers
elog trace.EventLog
mt *skl.Skiplist // Our latest (actively written) in-memory table
imm []*skl.Skiplist // Add here only AFTER pushing to flushChan.
opt Options
manifest *manifestFile
lc *levelsController
vlog valueLog
vptr valuePointer // less than or equal to a pointer to the last vlog value put into mt
writeCh chan *request
flushChan chan flushTask // For flushing memtables.
blockWrites int32
orc *oracle
}
const (
kvWriteChCapacity = 1000
)
func (out *DB) replayFunction() func(Entry, valuePointer) error {
type txnEntry struct {
nk []byte
v y.ValueStruct
}
var txn []txnEntry
var lastCommit uint64
toLSM := func(nk []byte, vs y.ValueStruct) {
for err := out.ensureRoomForWrite(); err != nil; err = out.ensureRoomForWrite() {
out.elog.Printf("Replay: Making room for writes")
time.Sleep(10 * time.Millisecond)
}
out.mt.Put(nk, vs)
}
first := true
return func(e Entry, vp valuePointer) error { // Function for replaying.
if first {
out.elog.Printf("First key=%q\n", e.Key)
}
first = false
if out.orc.nextTxnTs < y.ParseTs(e.Key) {
out.orc.nextTxnTs = y.ParseTs(e.Key)
}
nk := make([]byte, len(e.Key))
copy(nk, e.Key)
var nv []byte
meta := e.meta
if out.shouldWriteValueToLSM(e) {
nv = make([]byte, len(e.Value))
copy(nv, e.Value)
} else {
nv = make([]byte, vptrSize)
vp.Encode(nv)
meta = meta | bitValuePointer
}
v := y.ValueStruct{
Value: nv,
Meta: meta,
UserMeta: e.UserMeta,
}
if e.meta&bitFinTxn > 0 {
txnTs, err := strconv.ParseUint(string(e.Value), 10, 64)
if err != nil {
return errors.Wrapf(err, "Unable to parse txn fin: %q", e.Value)
}
y.AssertTrue(lastCommit == txnTs)
y.AssertTrue(len(txn) > 0)
// Got the end of txn. Now we can store them.
for _, t := range txn {
toLSM(t.nk, t.v)
}
txn = txn[:0]
lastCommit = 0
} else if e.meta&bitTxn > 0 {
txnTs := y.ParseTs(nk)
if lastCommit == 0 {
lastCommit = txnTs
}
if lastCommit != txnTs {
Warningf("Found an incomplete txn at timestamp %d. Discarding it.\n", lastCommit)
txn = txn[:0]
lastCommit = txnTs
}
te := txnEntry{nk: nk, v: v}
txn = append(txn, te)
} else {
// This entry is from a rewrite.
toLSM(nk, v)
// We shouldn't get this entry in the middle of a transaction.
y.AssertTrue(lastCommit == 0)
y.AssertTrue(len(txn) == 0)
}
return nil
}
}
// Open returns a new DB object.
func Open(opt Options) (db *DB, err error) {
opt.maxBatchSize = (15 * opt.MaxTableSize) / 100
opt.maxBatchCount = opt.maxBatchSize / int64(skl.MaxNodeSize)
if opt.ValueThreshold > math.MaxUint16-16 {
return nil, ErrValueThreshold
}
if opt.ReadOnly {
// Can't truncate if the DB is read only.
opt.Truncate = false
}
for _, path := range []string{opt.Dir, opt.ValueDir} {
dirExists, err := exists(path)
if err != nil {
return nil, y.Wrapf(err, "Invalid Dir: %q", path)
}
if !dirExists {
if opt.ReadOnly {
return nil, y.Wrapf(err, "Cannot find Dir for read-only open: %q", path)
}
// Try to create the directory
err = os.Mkdir(path, 0700)
if err != nil {
return nil, y.Wrapf(err, "Error Creating Dir: %q", path)
}
}
}
absDir, err := filepath.Abs(opt.Dir)
if err != nil {
return nil, err
}
absValueDir, err := filepath.Abs(opt.ValueDir)
if err != nil {
return nil, err
}
var dirLockGuard, valueDirLockGuard *directoryLockGuard
dirLockGuard, err = acquireDirectoryLock(opt.Dir, lockFile, opt.ReadOnly)
if err != nil {
return nil, err
}
defer func() {
if dirLockGuard != nil {
_ = dirLockGuard.release()
}
}()
if absValueDir != absDir {
valueDirLockGuard, err = acquireDirectoryLock(opt.ValueDir, lockFile, opt.ReadOnly)
if err != nil {
return nil, err
}
}
defer func() {
if valueDirLockGuard != nil {
_ = valueDirLockGuard.release()
}
}()
if !(opt.ValueLogFileSize <= 2<<30 && opt.ValueLogFileSize >= 1<<20) {
return nil, ErrValueLogSize
}
if !(opt.ValueLogLoadingMode == options.FileIO ||
opt.ValueLogLoadingMode == options.MemoryMap) {
return nil, ErrInvalidLoadingMode
}
manifestFile, manifest, err := openOrCreateManifestFile(opt.Dir, opt.ReadOnly)
if err != nil {
return nil, err
}
defer func() {
if manifestFile != nil {
_ = manifestFile.close()
}
}()
db = &DB{
imm: make([]*skl.Skiplist, 0, opt.NumMemtables),
flushChan: make(chan flushTask, opt.NumMemtables),
writeCh: make(chan *request, kvWriteChCapacity),
opt: opt,
manifest: manifestFile,
elog: trace.NewEventLog("Badger", "DB"),
dirLockGuard: dirLockGuard,
valueDirGuard: valueDirLockGuard,
orc: newOracle(opt),
}
// Calculate initial size.
db.calculateSize()
db.closers.updateSize = y.NewCloser(1)
go db.updateSize(db.closers.updateSize)
db.mt = skl.NewSkiplist(arenaSize(opt))
// newLevelsController potentially loads files in directory.
if db.lc, err = newLevelsController(db, &manifest); err != nil {
return nil, err
}
if !opt.ReadOnly {
db.closers.compactors = y.NewCloser(1)
db.lc.startCompact(db.closers.compactors)
db.closers.memtable = y.NewCloser(1)
go db.flushMemtable(db.closers.memtable) // Need levels controller to be up.
}
headKey := y.KeyWithTs(head, math.MaxUint64)
// Need to pass with timestamp, lsm get removes the last 8 bytes and compares key
vs, err := db.get(headKey)
if err != nil {
return nil, errors.Wrap(err, "Retrieving head")
}
db.orc.nextTxnTs = vs.Version
var vptr valuePointer
if len(vs.Value) > 0 {
vptr.Decode(vs.Value)
}
replayCloser := y.NewCloser(1)
go db.doWrites(replayCloser)
if err = db.vlog.open(db, vptr, db.replayFunction()); err != nil {
return db, err
}
replayCloser.SignalAndWait() // Wait for replay to be applied first.
// Let's advance nextTxnTs to one more than whatever we observed via
// replaying the logs.
db.orc.txnMark.Done(db.orc.nextTxnTs)
db.orc.nextTxnTs++
db.writeCh = make(chan *request, kvWriteChCapacity)
db.closers.writes = y.NewCloser(1)
go db.doWrites(db.closers.writes)
db.closers.valueGC = y.NewCloser(1)
go db.vlog.waitOnGC(db.closers.valueGC)
valueDirLockGuard = nil
dirLockGuard = nil
manifestFile = nil
return db, nil
}
// Close closes a DB. It's crucial to call it to ensure all the pending updates
// make their way to disk. Calling DB.Close() multiple times is not safe and would
// cause panic.
func (db *DB) Close() (err error) {
db.elog.Printf("Closing database")
// Stop value GC first.
db.closers.valueGC.SignalAndWait()
// Stop writes next.
db.closers.writes.SignalAndWait()
// Now close the value log.
if vlogErr := db.vlog.Close(); err == nil {
err = errors.Wrap(vlogErr, "DB.Close")
}
// Make sure that block writer is done pushing stuff into memtable!
// Otherwise, you will have a race condition: we are trying to flush memtables
// and remove them completely, while the block / memtable writer is still
// trying to push stuff into the memtable. This will also resolve the value
// offset problem: as we push into memtable, we update value offsets there.
if !db.mt.Empty() {
db.elog.Printf("Flushing memtable")
for {
pushedFlushTask := func() bool {
db.Lock()
defer db.Unlock()
y.AssertTrue(db.mt != nil)
select {
case db.flushChan <- flushTask{db.mt, db.vptr}:
db.imm = append(db.imm, db.mt) // Flusher will attempt to remove this from s.imm.
db.mt = nil // Will segfault if we try writing!
db.elog.Printf("pushed to flush chan\n")
return true
default:
// If we fail to push, we need to unlock and wait for a short while.
// The flushing operation needs to update s.imm. Otherwise, we have a deadlock.
// TODO: Think about how to do this more cleanly, maybe without any locks.
}
return false
}()
if pushedFlushTask {
break
}
time.Sleep(10 * time.Millisecond)
}
}
db.flushChan <- flushTask{nil, valuePointer{}} // Tell flusher to quit.
if db.closers.memtable != nil {
db.closers.memtable.Wait()
db.elog.Printf("Memtable flushed")
}
if db.closers.compactors != nil {
db.closers.compactors.SignalAndWait()
db.elog.Printf("Compaction finished")
}
// Force Compact L0
// We don't need to care about cstatus since no parallel compaction is running.
cd := compactDef{
elog: trace.New("Badger", "Compact"),
thisLevel: db.lc.levels[0],
nextLevel: db.lc.levels[1],
}
cd.elog.SetMaxEvents(100)
defer cd.elog.Finish()
if db.lc.fillTablesL0(&cd) {
if err := db.lc.runCompactDef(0, cd); err != nil {
cd.elog.LazyPrintf("\tLOG Compact FAILED with error: %+v: %+v", err, cd)
}
} else {
cd.elog.LazyPrintf("fillTables failed for level zero. No compaction required")
}
if lcErr := db.lc.close(); err == nil {
err = errors.Wrap(lcErr, "DB.Close")
}
db.elog.Printf("Waiting for closer")
db.closers.updateSize.SignalAndWait()
db.elog.Finish()
if db.dirLockGuard != nil {
if guardErr := db.dirLockGuard.release(); err == nil {
err = errors.Wrap(guardErr, "DB.Close")
}
}
if db.valueDirGuard != nil {
if guardErr := db.valueDirGuard.release(); err == nil {
err = errors.Wrap(guardErr, "DB.Close")
}
}
if manifestErr := db.manifest.close(); err == nil {
err = errors.Wrap(manifestErr, "DB.Close")
}
// Fsync directories to ensure that lock file, and any other removed files whose directory
// we haven't specifically fsynced, are guaranteed to have their directory entry removal
// persisted to disk.
if syncErr := syncDir(db.opt.Dir); err == nil {
err = errors.Wrap(syncErr, "DB.Close")
}
if syncErr := syncDir(db.opt.ValueDir); err == nil {
err = errors.Wrap(syncErr, "DB.Close")
}
return err
}
const (
lockFile = "LOCK"
)
// When you create or delete a file, you have to ensure the directory entry for the file is synced
// in order to guarantee the file is visible (if the system crashes). (See the man page for fsync,
// or see https://github.com/coreos/etcd/issues/6368 for an example.)
func syncDir(dir string) error {
f, err := openDir(dir)
if err != nil {
return errors.Wrapf(err, "While opening directory: %s.", dir)
}
err = f.Sync()
closeErr := f.Close()
if err != nil {
return errors.Wrapf(err, "While syncing directory: %s.", dir)
}
return errors.Wrapf(closeErr, "While closing directory: %s.", dir)
}
// getMemtables returns the current memtables and get references.
func (db *DB) getMemTables() ([]*skl.Skiplist, func()) {
db.RLock()
defer db.RUnlock()
tables := make([]*skl.Skiplist, len(db.imm)+1)
// Get mutable memtable.
tables[0] = db.mt
tables[0].IncrRef()
// Get immutable memtables.
last := len(db.imm) - 1
for i := range db.imm {
tables[i+1] = db.imm[last-i]
tables[i+1].IncrRef()
}
return tables, func() {
for _, tbl := range tables {
tbl.DecrRef()
}
}
}
// get returns the value in memtable or disk for given key.
// Note that value will include meta byte.
//
// IMPORTANT: We should never write an entry with an older timestamp for the same key, We need to
// maintain this invariant to search for the latest value of a key, or else we need to search in all
// tables and find the max version among them. To maintain this invariant, we also need to ensure
// that all versions of a key are always present in the same table from level 1, because compaction
// can push any table down.
//
// Update (Sep 22, 2018): To maintain the above invariant, and to allow keys to be moved from one
// value log to another (while reclaiming space during value log GC), we have logically moved this
// need to write "old versions after new versions" to the badgerMove keyspace. Thus, for normal
// gets, we can stop going down the LSM tree once we find any version of the key (note however that
// we will ALWAYS skip versions with ts greater than the key version). However, if that key has
// been moved, then for the corresponding movekey, we'll look through all the levels of the tree
// to ensure that we pick the highest version of the movekey present.
func (db *DB) get(key []byte) (y.ValueStruct, error) {
tables, decr := db.getMemTables() // Lock should be released.
defer decr()
var maxVs *y.ValueStruct
var version uint64
if bytes.HasPrefix(key, badgerMove) {
// If we are checking badgerMove key, we should look into all the
// levels, so we can pick up the newer versions, which might have been
// compacted down the tree.
maxVs = &y.ValueStruct{}
version = y.ParseTs(key)
}
y.NumGets.Add(1)
for i := 0; i < len(tables); i++ {
vs := tables[i].Get(key)
y.NumMemtableGets.Add(1)
if vs.Meta == 0 && vs.Value == nil {
continue
}
// Found a version of the key. For user keyspace, return immediately. For move keyspace,
// continue iterating, unless we found a version == given key version.
if maxVs == nil || vs.Version == version {
return vs, nil
}
if maxVs.Version < vs.Version {
*maxVs = vs
}
}
return db.lc.get(key, maxVs)
}
func (db *DB) updateOffset(ptrs []valuePointer) {
var ptr valuePointer
for i := len(ptrs) - 1; i >= 0; i-- {
p := ptrs[i]
if !p.IsZero() {
ptr = p
break
}
}
if ptr.IsZero() {
return
}
db.Lock()
defer db.Unlock()
y.AssertTrue(!ptr.Less(db.vptr))
db.vptr = ptr
}
var requestPool = sync.Pool{
New: func() interface{} {
return new(request)
},
}
func (db *DB) shouldWriteValueToLSM(e Entry) bool {
return len(e.Value) < db.opt.ValueThreshold
}
func (db *DB) writeToLSM(b *request) error {
if len(b.Ptrs) != len(b.Entries) {
return errors.Errorf("Ptrs and Entries don't match: %+v", b)
}
for i, entry := range b.Entries {
if entry.meta&bitFinTxn != 0 {
continue
}
if db.shouldWriteValueToLSM(*entry) { // Will include deletion / tombstone case.
db.mt.Put(entry.Key,
y.ValueStruct{
Value: entry.Value,
Meta: entry.meta,
UserMeta: entry.UserMeta,
ExpiresAt: entry.ExpiresAt,
})
} else {
var offsetBuf [vptrSize]byte
db.mt.Put(entry.Key,
y.ValueStruct{
Value: b.Ptrs[i].Encode(offsetBuf[:]),
Meta: entry.meta | bitValuePointer,
UserMeta: entry.UserMeta,
ExpiresAt: entry.ExpiresAt,
})
}
}
return nil
}
// writeRequests is called serially by only one goroutine.
func (db *DB) writeRequests(reqs []*request) error {
if len(reqs) == 0 {
return nil
}
done := func(err error) {
for _, r := range reqs {
r.Err = err
r.Wg.Done()
}
}
db.elog.Printf("writeRequests called. Writing to value log")
err := db.vlog.write(reqs)
if err != nil {
done(err)
return err
}
db.elog.Printf("Writing to memtable")
var count int
for _, b := range reqs {
if len(b.Entries) == 0 {
continue
}
count += len(b.Entries)
var i uint64
for err := db.ensureRoomForWrite(); err == errNoRoom; err = db.ensureRoomForWrite() {
i++
if i%100 == 0 {
db.elog.Printf("Making room for writes")
}
// We need to poll a bit because both hasRoomForWrite and the flusher need access to s.imm.
// When flushChan is full and you are blocked there, and the flusher is trying to update s.imm,
// you will get a deadlock.
time.Sleep(10 * time.Millisecond)
}
if err != nil {
done(err)
return errors.Wrap(err, "writeRequests")
}
if err := db.writeToLSM(b); err != nil {
done(err)
return errors.Wrap(err, "writeRequests")
}
db.updateOffset(b.Ptrs)
}
done(nil)
db.elog.Printf("%d entries written", count)
return nil
}
func (db *DB) sendToWriteCh(entries []*Entry) (*request, error) {
if atomic.LoadInt32(&db.blockWrites) == 1 {
return nil, ErrBlockedWrites
}
var count, size int64
for _, e := range entries {
size += int64(e.estimateSize(db.opt.ValueThreshold))
count++
}
if count >= db.opt.maxBatchCount || size >= db.opt.maxBatchSize {
return nil, ErrTxnTooBig
}
// We can only service one request because we need each txn to be stored in a contigous section.
// Txns should not interleave among other txns or rewrites.
req := requestPool.Get().(*request)
req.Entries = entries
req.Wg = sync.WaitGroup{}
req.Wg.Add(1)
db.writeCh <- req // Handled in doWrites.
y.NumPuts.Add(int64(len(entries)))
return req, nil
}
func (db *DB) doWrites(lc *y.Closer) {
defer lc.Done()
pendingCh := make(chan struct{}, 1)
writeRequests := func(reqs []*request) {
if err := db.writeRequests(reqs); err != nil {
Errorf("writeRequests: %v", err)
}
<-pendingCh
}
// This variable tracks the number of pending writes.
reqLen := new(expvar.Int)
y.PendingWrites.Set(db.opt.Dir, reqLen)
reqs := make([]*request, 0, 10)
for {
var r *request
select {
case r = <-db.writeCh:
case <-lc.HasBeenClosed():
goto closedCase
}
for {
reqs = append(reqs, r)
reqLen.Set(int64(len(reqs)))
if len(reqs) >= 3*kvWriteChCapacity {
pendingCh <- struct{}{} // blocking.
goto writeCase
}
select {
// Either push to pending, or continue to pick from writeCh.
case r = <-db.writeCh:
case pendingCh <- struct{}{}:
goto writeCase
case <-lc.HasBeenClosed():
goto closedCase
}
}
closedCase:
close(db.writeCh)
for r := range db.writeCh { // Flush the channel.
reqs = append(reqs, r)
}
pendingCh <- struct{}{} // Push to pending before doing a write.
writeRequests(reqs)
return
writeCase:
go writeRequests(reqs)
reqs = make([]*request, 0, 10)
reqLen.Set(0)
}
}
// batchSet applies a list of badger.Entry. If a request level error occurs it
// will be returned.
// Check(kv.BatchSet(entries))
func (db *DB) batchSet(entries []*Entry) error {
req, err := db.sendToWriteCh(entries)
if err != nil {
return err
}
return req.Wait()
}
// batchSetAsync is the asynchronous version of batchSet. It accepts a callback
// function which is called when all the sets are complete. If a request level
// error occurs, it will be passed back via the callback.
// err := kv.BatchSetAsync(entries, func(err error)) {
// Check(err)
// }
func (db *DB) batchSetAsync(entries []*Entry, f func(error)) error {
req, err := db.sendToWriteCh(entries)
if err != nil {
return err
}
go func() {
err := req.Wait()
// Write is complete. Let's call the callback function now.
f(err)
}()
return nil
}
var errNoRoom = errors.New("No room for write")
// ensureRoomForWrite is always called serially.
func (db *DB) ensureRoomForWrite() error {
var err error
db.Lock()
defer db.Unlock()
if db.mt.MemSize() < db.opt.MaxTableSize {
return nil
}
y.AssertTrue(db.mt != nil) // A nil mt indicates that DB is being closed.
select {
case db.flushChan <- flushTask{db.mt, db.vptr}:
db.elog.Printf("Flushing value log to disk if async mode.")
// Ensure value log is synced to disk so this memtable's contents wouldn't be lost.
err = db.vlog.sync()
if err != nil {
return err
}
db.elog.Printf("Flushing memtable, mt.size=%d size of flushChan: %d\n",
db.mt.MemSize(), len(db.flushChan))
// We manage to push this task. Let's modify imm.
db.imm = append(db.imm, db.mt)
db.mt = skl.NewSkiplist(arenaSize(db.opt))
// New memtable is empty. We certainly have room.
return nil
default:
// We need to do this to unlock and allow the flusher to modify imm.
return errNoRoom
}
}
func arenaSize(opt Options) int64 {
return opt.MaxTableSize + opt.maxBatchSize + opt.maxBatchCount*int64(skl.MaxNodeSize)
}
// WriteLevel0Table flushes memtable.
func writeLevel0Table(s *skl.Skiplist, f *os.File) error {
iter := s.NewIterator()
defer iter.Close()
b := table.NewTableBuilder()
defer b.Close()
for iter.SeekToFirst(); iter.Valid(); iter.Next() {
if err := b.Add(iter.Key(), iter.Value()); err != nil {
return err
}
}
_, err := f.Write(b.Finish())
return err
}
type flushTask struct {
mt *skl.Skiplist
vptr valuePointer
}
// handleFlushTask must be run serially.
func (db *DB) handleFlushTask(ft flushTask) error {
if !ft.mt.Empty() {
// Store badger head even if vptr is zero, need it for readTs
db.elog.Printf("Storing offset: %+v\n", ft.vptr)
offset := make([]byte, vptrSize)
ft.vptr.Encode(offset)
// Pick the max commit ts, so in case of crash, our read ts would be higher than all the
// commits.
headTs := y.KeyWithTs(head, db.orc.nextTs())
ft.mt.Put(headTs, y.ValueStruct{Value: offset})
}
fileID := db.lc.reserveFileID()
fd, err := y.CreateSyncedFile(table.NewFilename(fileID, db.opt.Dir), true)
if err != nil {
return y.Wrap(err)
}
// Don't block just to sync the directory entry.
dirSyncCh := make(chan error)
go func() { dirSyncCh <- syncDir(db.opt.Dir) }()
err = writeLevel0Table(ft.mt, fd)
dirSyncErr := <-dirSyncCh
if err != nil {
db.elog.Errorf("ERROR while writing to level 0: %v", err)
return err
}
if dirSyncErr != nil {
// Do dir sync as best effort. No need to return due to an error there.
db.elog.Errorf("ERROR while syncing level directory: %v", dirSyncErr)
}
tbl, err := table.OpenTable(fd, db.opt.TableLoadingMode)
if err != nil {
db.elog.Printf("ERROR while opening table: %v", err)
return err
}
// We own a ref on tbl.
err = db.lc.addLevel0Table(tbl) // This will incrRef (if we don't error, sure)
tbl.DecrRef() // Releases our ref.
if err != nil {
return err
}
// Update s.imm. Need a lock.
db.Lock()
defer db.Unlock()
// This is a single-threaded operation. ft.mt corresponds to the head of
// db.imm list. Once we flush it, we advance db.imm. The next ft.mt
// which would arrive here would match db.imm[0], because we acquire a
// lock over DB when pushing to flushChan.
// TODO: This logic is dirty AF. Any change and this could easily break.
y.AssertTrue(ft.mt == db.imm[0])
db.imm = db.imm[1:]
ft.mt.DecrRef() // Return memory.
return nil
}
// flushMemtable must keep running until we send it an empty flushTask. If there
// are errors during handling the flush task, we'll retry indefinitely.
func (db *DB) flushMemtable(lc *y.Closer) error {
defer lc.Done()
for ft := range db.flushChan {
if ft.mt == nil {
return nil // Stop this goroutine.
}
for {
err := db.handleFlushTask(ft)
if err == nil {
break
}
// Encounterd error. Retry indefinitely.
Errorf("Failure while flushing memtable to disk: %v. Retrying...\n", err)
time.Sleep(time.Second)
}
}
return nil
}
func exists(path string) (bool, error) {
_, err := os.Stat(path)
if err == nil {
return true, nil
}
if os.IsNotExist(err) {
return false, nil
}
return true, err
}
// This function does a filewalk, calculates the size of vlog and sst files and stores it in
// y.LSMSize and y.VlogSize.
func (db *DB) calculateSize() {
newInt := func(val int64) *expvar.Int {
v := new(expvar.Int)
v.Add(val)
return v
}
totalSize := func(dir string) (int64, int64) {
var lsmSize, vlogSize int64
err := filepath.Walk(dir, func(path string, info os.FileInfo, err error) error {
if err != nil {
return err
}
ext := filepath.Ext(path)
if ext == ".sst" {
lsmSize += info.Size()
} else if ext == ".vlog" {
vlogSize += info.Size()
}
return nil
})
if err != nil {
db.elog.Printf("Got error while calculating total size of directory: %s", dir)
}
return lsmSize, vlogSize
}
lsmSize, vlogSize := totalSize(db.opt.Dir)
y.LSMSize.Set(db.opt.Dir, newInt(lsmSize))
// If valueDir is different from dir, we'd have to do another walk.
if db.opt.ValueDir != db.opt.Dir {
_, vlogSize = totalSize(db.opt.ValueDir)
}
y.VlogSize.Set(db.opt.Dir, newInt(vlogSize))
}
func (db *DB) updateSize(lc *y.Closer) {
defer lc.Done()
metricsTicker := time.NewTicker(time.Minute)
defer metricsTicker.Stop()
for {
select {
case <-metricsTicker.C:
db.calculateSize()
case <-lc.HasBeenClosed():
return
}
}
}
// RunValueLogGC triggers a value log garbage collection.
//
// It picks value log files to perform GC based on statistics that are collected
// duing compactions. If no such statistics are available, then log files are
// picked in random order. The process stops as soon as the first log file is
// encountered which does not result in garbage collection.
//
// When a log file is picked, it is first sampled. If the sample shows that we
// can discard at least discardRatio space of that file, it would be rewritten.
//
// If a call to RunValueLogGC results in no rewrites, then an ErrNoRewrite is
// thrown indicating that the call resulted in no file rewrites.
//
// We recommend setting discardRatio to 0.5, thus indicating that a file be
// rewritten if half the space can be discarded. This results in a lifetime
// value log write amplification of 2 (1 from original write + 0.5 rewrite +
// 0.25 + 0.125 + ... = 2). Setting it to higher value would result in fewer
// space reclaims, while setting it to a lower value would result in more space
// reclaims at the cost of increased activity on the LSM tree. discardRatio
// must be in the range (0.0, 1.0), both endpoints excluded, otherwise an
// ErrInvalidRequest is returned.
//
// Only one GC is allowed at a time. If another value log GC is running, or DB
// has been closed, this would return an ErrRejected.
//
// Note: Every time GC is run, it would produce a spike of activity on the LSM
// tree.
func (db *DB) RunValueLogGC(discardRatio float64) error {
if discardRatio >= 1.0 || discardRatio <= 0.0 {
return ErrInvalidRequest
}
// Find head on disk
headKey := y.KeyWithTs(head, math.MaxUint64)
// Need to pass with timestamp, lsm get removes the last 8 bytes and compares key
val, err := db.lc.get(headKey, nil)
if err != nil {
return errors.Wrap(err, "Retrieving head from on-disk LSM")
}
var head valuePointer
if len(val.Value) > 0 {
head.Decode(val.Value)
}
// Pick a log file and run GC