-
Notifications
You must be signed in to change notification settings - Fork 61
/
ChangeLog.txt
353 lines (290 loc) · 14.2 KB
/
ChangeLog.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
2016-06-08 Version 4.7
New features
- Simple Bayesian Optimization demo
Improvements
- Improved use of PSIS
- More options added to gp_monotonic
- Monotonicity now works for additive covariance functions with selected
variables
- Possibility to use gpcf_squared.m-covariance function with derivative
observations/monotonicity
- Default behaviour made more robust by changing default jitter from
1e-9 to 1e-6
- LA-LOO uses the cavity method as the default (see Vehtari et al
(2016). Bayesian leave-one-out cross-validation approximations for
Gaussian latent variable models. JMLR, accpeted for publication)
- Selected variables -option works now better with monotonicity
Bugfixes
- small error in derivative observation computation fixed
- several minor bug fixes
2015-07-09 Version 4.6
New features
- Use Pareto smoothed importance sampling (Vehtari & Gelman, 2015) for
- importance sampling leave-one-out cross-validation
(gpmc_loopred.m)
- importance sampling integration over hyperparameters
(gp_ia.m)
- importance sampling part of the logistic Gaussian process density
estimation (lgpdens.m)
- references:
- Aki Vehtari and Andrew Gelman (2015). Pareto smoothed importance
sampling. arXiv preprint arXiv:1507.02646.
- Aki Vehtari, Andrew Gelman and Jonah Gabry (2015). Efficient
implementation of leave-one-out cross-validation and WAIC for
evaluating fitted Bayesian models.
- New covariance functions
- gpcf_additive creates a mixture over products of kernels for each dimension
reference: Duvenaud, D. K., Nickisch, H., & Rasmussen, C. E. (2011).
Additive Gaussian processes. In Advances in neural information
processing systems, pp. 226-234.
- gpcf_linearLogistic corresponds to logistic mean function
- gpcf_linearMichelismenten correpsonds Michelis Menten mean function
Improvements
- faster EP moment calculation for lik_logit
Several minor bugfixes
2014-07-22 Version 4.5
New features
- Input dependent noise and signal variance.
Tolvanen, V., Jylänki, P. and Vehtari, A. (2014). Expectation Propagation for
Nonstationary Heteroscedastic Gaussian Process Regression. In Proceedings of IEEE
International Workshop on Machine Learning for Signal Processing, accepted for
publication. Preprint arXiv:1404.5443
- Sparse stochastic variational inference model.
Hensman, J., Fusi, N. and Lawrence, N. D. (2013). Gaussian processes
for big data. arXiv preprint arXiv:1309.6835.
- Option 'autoscale' in the gp_rnd.m to get split normal approximated samples from the
posterior predictive distribution of the latent variable.
Geweke, J. (1989). Bayesian Inference in Econometric Models Using Monte Carlo
Integration. Econometrica, 57(6):1317-1339.
Villani, M. and Larsson, R. (2006). The Multivariate Split Normal Distribution
and Asymmetric Principal Components Analysis. Communications in
Statistics - Theory and Methods, 35(6):1123-1140.
Improvements
- New unit test environment using the Matlab built-in test framework (the old Xunit
package is still also supported).
- Precomputed demo results (including the figures) are now available in the folder
tests/realValues.
- New demos demonstrating new features etc.
- demo_epinf, demonstrating the input dependent noise and signal variance model
- demo_svi_regression, demo_svi_classification
- demo_modelcomparison2, demo_survival_comparison
Several minor bugfixes
2014-04-11 Version 4.4
New features
- Monotonicity constraint for the latent function.
Riihimäki and Vehtari (2010). Gaussian processes with monotonicity
information. Journal of Machine Learning Research: Workshop and
Conference Proceedings, 9:645-652.
- State space implementation for GP inference (1D) using Kalman filtering.
For the following covariance functions
- Squared-Exponential
- Matérn-3/2 & 5/2
- Exponential
- Periodic
- Constant
Särkkä, S., Solin, A., Hartikainen, J. (2013).
Spatiotemporal learning via infinite-dimensional Bayesian filtering and
smoothing. IEEE Signal Processing Magazine, 30(4):51-61.
Simo Sarkka (2013). Bayesian filtering and smoothing. Cambridge
University Press.
Solin, A. and Särkkä, S. (2014). Explicit link between periodic
covariance functions and state space models. AISTATS 2014.
Improvements
- GP_PLOT function for quick plotting of GP predictions
- GP_IA now warns if it detects multimodal posterior distributions
- much faster EP with log-Gaussian likelihood (numerical integrals ->
analytical results)
- faster WAIC with GP_IA array (numerical integrals -> analytical results)
- New demos demonstrating new features etc.
- demo_minimal, minimal demo for regression and classification
- demo_kalman1, demo_kalman2
- demo_monotonic, demo_monotonic2
Bug fixes
- Periodic covariance function works with selectedVariables
- Survival likelihoods (log-Gaussian, log-Logistic and Weibull) work now with
empty z for uncensored data
- Return parameters in correct order from gp_pak if using hyperhyperpriors
- Other bug fixes
2013-11-26 Version 4.3.1
Improvements:
- Updated cpsrf and psrf to follow BDA3: split each chain to two
halves and use Geyer's IPSE for n_eff
- Multi-latent models for Octave
2013-10-14 Version 4.3
Improvements:
- lgpdens.m: better default estimation using importance and rejection sampling, better default priors
- Robust-EP for zero truncated negative-binomial likelihood
- If moment computations in EP return NaN, return NaN energy (handled
gracefully by fminlbfgs and fminscg)
- gp_cpred.m: new option 'target'
- gp_ia.m: Changed Hessian computation stepsize to 1e-3
- gpstuff_version.m: function for returning current GPstuff version
- gpia_jpreds.m: a new function
- demo_survival_weibull.m -> demo_survival_aft.m
Bug fixes:
- build suitesparse path correctly if it includes spaces
- gp_avpredcomp.m: fixed for Cox-PH
- gp_cpred.m: fixed for Cox-PH
- esls.m: don't accept a step to a point with infinite log likelihood
- gp_ia.m: removed some redundant computation
- gp_rnd.m: works now for multilatent models also
- bugfixes for setrandstream
- other bugfixes
2013-06-13 Version 4.2
Improvements
- Cross-validation much faster if no bias-corrections are needed (computes
only the necessary predictions)
- Marginal posterior corrections with loopred (Laplace) and cross-validation
- More robust computation of marginal posterior corrections (utilize
log distributions)
- More robust density estimation in lgpdens (default parameters changed)
Bug fixes
- Mex files now in correct folders if compiled with SuiteSparse (covariance matrix
computation now much faster)
- Fixed bug with default marginal posterior correction when using gp_predcm
- Fixed conditions in likelihood functions for grid approximation of
predictions with marginal posterior corrections
- Fixed outputs of gpmc_preds with multilatent models (thanks to Mahdi
Biparva for pointing this out)
- and some minor bug fixes
2013-04-24 Version 4.1
New features:
- Multinomial probit classification with nested-EP. Jaakko Riihimäki,
Pasi Jylänki and Aki Vehtari (2013). Nested Expectation Propagation
for Gaussian Process Classification with a Multinomial Probit
Likelihood. Journal of Machine Learning Research 14:75-109, 2013.
- Marginal posterior corrections for latent values. Cseke & Heskes
(2011). Approximate Marginals in Latent Gaussian Models. Journal of
Machine Learning Research 12 (2011), 417-454
- Laplace: cm2 and fact
- EP: fact
Improvements
- lgpdens ignores now NaNs instead of giving error
- gp_cpred has a new option 'target' accpeting values 'f' or 'mu'
- unified gp_waic and gp_dic
- by default return mlpd
- option 'form' accetps now values 'mean' 'all' 'sum' and 'dic'
- improved survival demo demo_survival_aft (accalerated failure time)
- renamed and improved from demo_survival_weibull
- rearranged some files to more logical directories
- bug fixes
New files
- gp_predcm: marginal posterior corrections for latent values.
- demo_improvedmarginals: demonstration of marginal posterior corrections
- demo_improvedmarginals2: demonstration of marginal posterior corrections
- lik_multinomprobit: multinomial probit likelihood
- demo_multiclass_nested_ep: demonstration of nested EP with multinomprobit
2013-03-12 Version 4.0
New features:
- Multilatent models: multinomial, softmax, Cox-PH, density
estimation, density regression, input dependent noise, input
dependent overdispersion in Weibull, zero-inflated negative binomial
- Survival models: Cox-PH, Log-Gaussian, Log-logistic, diagnostic criteria
- Quantile regression
- PASS-GP active set selection for classification
- optional memory save in gradient computation
- approximative gradient for EP-LOO
- Octave compatibility. Please download Octave specific version of GPstuff
to use GPstuff with Octave. Following features of v4.0 work only with
Matlab:
- Inputdependent multilatent models
- Zero-Inflated Negative-Binomial model
- Cox proportional hazard model
- Compactly Supported (PPCS*) covariance functions
- Kronecker speedup for density estimation
Improvements:
- much faster parallel-EP (now default)
- faster sequential EP
New functions & files
- demo_inputdependentnoise: input dependent noise in Gaussian model
- demo_inputdependentweibull: input dependent overdispersion in Weibull
- demo_lgpdens: density estimation, density regression
- demo_loopred: leave-one-out cross-validation approximations
- demo_mcmc: different MCMC methods demonstrated
- demo_memorysave: memory save in gradient computation
- demo_modelcomparison2: additional model comparsion demo
- demo_multiclass: multi-class classification
- demo_multinom: multinomial model
- demo_passgp: PASS-GP active set selection for classification
- demo_quantilegp: Quantile regression
- demo_survival_comparison: survival model diagnostic criteria
- demo_survival_coxph: Gaussian process Cox-PH model
- demo_zinegbin: zero-inflated negative binomial
- gpep_loog.m: approximate gradient for EP-LOO
- gp_kfcv_cdf.m: K-fold cross validation to predict CDF for GP model
- gp_kfcve.m: mean negative log k-fold-cv predictive density.
- gpla_looe.m: Laplace Leave-one-out energy (negative preditive density)
- gp_predcdf.m: Predictive distribution CDF estimation
- lgpdens_cum.m: Bayesian Bootstrap density estimation integration
- lgpdens.m: Density estimation with Gaussian Processes
- lik_coxph.m: Cox proportaional hazard likelihood
- lik_inputdependentnoise.m: Input-dependent noise likelihood
- lik_inputdependentweibull.m: Input-dependent Weibull likelihood
- lik_lgpc.m: Logistic likelihood for conditional density estimation
- lik_lgp.m: Logistic likelihood for density estimation
- lik_loggaussian.m: Log-Gaussian likelihood
- lik_loglogistic.m: Log-logistic likelihood
- lik_multinom.m: Multinomial likelihood
- lik_qgp.m: Quantile-GP regression likelihood
- lik_softmax.m: Softmax (multiclass) likelihood
- lik_zinegbin.m: Zero-Inflated Negative-Binomial likelihood
- passgp.m: Pass-GP routine
- pred_coxphhs.m: Hazard and survival functions for Cox-Ph likelihood
- pred_coxph.m: Returns useful values for Cox-PH likelihood
- pred_coxphp.m: Integrate model (cox-ph) with respect to time
And some bug fixes
2012-10-29 Version 3.4.1 published.
Bug fixes
- LOO-CV predictions fixed (gp_loopred, gpmc_loopred, gpla_e, gpep_e)
- k-fold-cv for PIC sparse approximation fixed (gp_kfcv)
- other bug fixes (gp_pred, gp_e, prior_t)
Improved functions
- LOO-CV added to demo_modelassessment1, demo_modelassessment2,
xunit tests
- DTC,VAR,SOR sparse approximations for Laplace (gpla_g, gpla_pred)
- improved robustnes of optimisation functions (fminscg, fminlbfgs)
- new function for setting random stream (setrandstream)
- many demos made to display less clutter
2012-10-08 Version 3.4 published.
Improved functions
- GP_IA improved autoscale and display options
- GP_KFCV optional return values for cvpreds (f,lp,y)
- GP_LOOEG approximate gradients for EP-LOO (no implicit terms)
- GP_OPTIM new options 'lambda' and 'lambdalimit' used by fminscg
- GP_SET new option 'savememory' for memory saving in gradient calculations
- FMINSCG new options 'lambda' and 'lambdalimit'
Other changes
- SuiteSparse v 3.4 included in the distribution package
- gp/demos renamed to gp/demodata
- Few bug fixes and several documentation fixes
2012-06-20 Version 3.3 published. Some new functions and bug fixes.
New functions
- GP_CPRED Conditional predictions using specific covariates
- GPCF_SCALED Create a scaled covariance function
- SURROGATE_SLS Markov chain Monte Carlo sampling using Surrogate
data Slice Sampling
- PRIOR_INVT Inverse Student-t prior structure
- PRIOR_INVUNIF Inverse uniform prior structure
- PRIOR_LOGT Student-t prior structure for the logarithm of the parameter
- HMC_NUTS No-U-Turn Sampler (NUTS)
- ADDLOGS Add numbers represented by their logarithms.
- LOGITINV Inverse of the logit transformation
- MAPCOLOR Returns a colormap ranging from blue through gray to red
- SUMLOGS Sum of vector where numbers are represented by
their logarithms.
- TEST_ALL Unit testing with xunit package (requires xunit
from Mathowrks File Exchange)
Improved functions
- Robust-EP method improved
- GP_PRED Makes predictions using training data if no test
data is given
- GP_LOOPRED Supports now sparse approximations FIC, PIC,
CS+FIC and latent method Laplace
- GP_MC By default use Surrogate Slice Sampler for
hyperparameters and Elliptical Slice Sampler for
latent values. Supports now also NUTS.
- SLS Added Shrinking-rank SLS, Covariance-matching SLS
Several bug and documentation fixes
2012-03-16 Version 3.2.1 published. Many bug fixes.
2011-10-11 Version 3.2 published. New observation models and new inference algorithms (e.g. EP for Student-t model) added plus bug fixes.
2011-04-15 Version 3.1 published. New functionalities and major update to argument syntax making the package easier to use.