forked from ethereum/execution-specs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fork.py
962 lines (803 loc) · 29.9 KB
/
fork.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
"""
Ethereum Specification
^^^^^^^^^^^^^^^^^^^^^^
.. contents:: Table of Contents
:backlinks: none
:local:
Introduction
------------
Entry point for the Ethereum specification.
"""
from dataclasses import dataclass
from typing import List, Optional, Set, Tuple
from ethereum_types.bytes import Bytes, Bytes32
from ethereum_types.numeric import U64, U256, Uint
from ethereum.crypto.elliptic_curve import SECP256K1N, secp256k1_recover
from ethereum.crypto.hash import Hash32, keccak256
from ethereum.ethash import dataset_size, generate_cache, hashimoto_light
from ethereum.exceptions import InvalidBlock, InvalidSenderError
from .. import rlp
from . import vm
from .blocks import Block, Header, Log, Receipt
from .bloom import logs_bloom
from .fork_types import Address, Bloom, Root
from .state import (
State,
create_ether,
destroy_account,
get_account,
increment_nonce,
set_account_balance,
state_root,
)
from .transactions import (
TX_BASE_COST,
TX_DATA_COST_PER_NON_ZERO,
TX_DATA_COST_PER_ZERO,
Transaction,
)
from .trie import Trie, root, trie_set
from .utils.message import prepare_message
from .vm.interpreter import process_message_call
BLOCK_REWARD = U256(5 * 10**18)
GAS_LIMIT_ADJUSTMENT_FACTOR = Uint(1024)
GAS_LIMIT_MINIMUM = Uint(5000)
MINIMUM_DIFFICULTY = Uint(131072)
MAX_OMMER_DEPTH = Uint(6)
@dataclass
class BlockChain:
"""
History and current state of the block chain.
"""
blocks: List[Block]
state: State
chain_id: U64
def apply_fork(old: BlockChain) -> BlockChain:
"""
Transforms the state from the previous hard fork (`old`) into the block
chain object for this hard fork and returns it.
When forks need to implement an irregular state transition, this function
is used to handle the irregularity. See the :ref:`DAO Fork <dao-fork>` for
an example.
Parameters
----------
old :
Previous block chain object.
Returns
-------
new : `BlockChain`
Upgraded block chain object for this hard fork.
"""
return old
def get_last_256_block_hashes(chain: BlockChain) -> List[Hash32]:
"""
Obtain the list of hashes of the previous 256 blocks in order of
increasing block number.
This function will return less hashes for the first 256 blocks.
The ``BLOCKHASH`` opcode needs to access the latest hashes on the chain,
therefore this function retrieves them.
Parameters
----------
chain :
History and current state.
Returns
-------
recent_block_hashes : `List[Hash32]`
Hashes of the recent 256 blocks in order of increasing block number.
"""
recent_blocks = chain.blocks[-255:]
# TODO: This function has not been tested rigorously
if len(recent_blocks) == 0:
return []
recent_block_hashes = []
for block in recent_blocks:
prev_block_hash = block.header.parent_hash
recent_block_hashes.append(prev_block_hash)
# We are computing the hash only for the most recent block and not for
# the rest of the blocks as they have successors which have the hash of
# the current block as parent hash.
most_recent_block_hash = keccak256(rlp.encode(recent_blocks[-1].header))
recent_block_hashes.append(most_recent_block_hash)
return recent_block_hashes
def state_transition(chain: BlockChain, block: Block) -> None:
"""
Attempts to apply a block to an existing block chain.
All parts of the block's contents need to be verified before being added
to the chain. Blocks are verified by ensuring that the contents of the
block make logical sense with the contents of the parent block. The
information in the block's header must also match the corresponding
information in the block.
To implement Ethereum, in theory clients are only required to store the
most recent 255 blocks of the chain since as far as execution is
concerned, only those blocks are accessed. Practically, however, clients
should store more blocks to handle reorgs.
Parameters
----------
chain :
History and current state.
block :
Block to apply to `chain`.
"""
parent_header = chain.blocks[-1].header
validate_header(block.header, parent_header)
validate_ommers(block.ommers, block.header, chain)
apply_body_output = apply_body(
chain.state,
get_last_256_block_hashes(chain),
block.header.coinbase,
block.header.number,
block.header.gas_limit,
block.header.timestamp,
block.header.difficulty,
block.transactions,
block.ommers,
)
if apply_body_output.block_gas_used != block.header.gas_used:
raise InvalidBlock(
f"{apply_body_output.block_gas_used} != {block.header.gas_used}"
)
if apply_body_output.transactions_root != block.header.transactions_root:
raise InvalidBlock
if apply_body_output.state_root != block.header.state_root:
raise InvalidBlock
if apply_body_output.receipt_root != block.header.receipt_root:
raise InvalidBlock
if apply_body_output.block_logs_bloom != block.header.bloom:
raise InvalidBlock
chain.blocks.append(block)
if len(chain.blocks) > 255:
# Real clients have to store more blocks to deal with reorgs, but the
# protocol only requires the last 255
chain.blocks = chain.blocks[-255:]
def validate_header(header: Header, parent_header: Header) -> None:
"""
Verifies a block header.
In order to consider a block's header valid, the logic for the
quantities in the header should match the logic for the block itself.
For example the header timestamp should be greater than the block's parent
timestamp because the block was created *after* the parent block.
Additionally, the block's number should be directly following the parent
block's number since it is the next block in the sequence.
Parameters
----------
header :
Header to check for correctness.
parent_header :
Parent Header of the header to check for correctness
"""
if header.timestamp <= parent_header.timestamp:
raise InvalidBlock
if header.number != parent_header.number + Uint(1):
raise InvalidBlock
if not check_gas_limit(header.gas_limit, parent_header.gas_limit):
raise InvalidBlock
if len(header.extra_data) > 32:
raise InvalidBlock
block_difficulty = calculate_block_difficulty(
header.number,
header.timestamp,
parent_header.timestamp,
parent_header.difficulty,
)
if header.difficulty != block_difficulty:
raise InvalidBlock
block_parent_hash = keccak256(rlp.encode(parent_header))
if header.parent_hash != block_parent_hash:
raise InvalidBlock
validate_proof_of_work(header)
def generate_header_hash_for_pow(header: Header) -> Hash32:
"""
Generate rlp hash of the header which is to be used for Proof-of-Work
verification.
In other words, the PoW artefacts `mix_digest` and `nonce` are ignored
while calculating this hash.
A particular PoW is valid for a single hash, that hash is computed by
this function. The `nonce` and `mix_digest` are omitted from this hash
because they are being changed by miners in their search for a sufficient
proof-of-work.
Parameters
----------
header :
The header object for which the hash is to be generated.
Returns
-------
hash : `Hash32`
The PoW valid rlp hash of the passed in header.
"""
header_data_without_pow_artefacts = (
header.parent_hash,
header.ommers_hash,
header.coinbase,
header.state_root,
header.transactions_root,
header.receipt_root,
header.bloom,
header.difficulty,
header.number,
header.gas_limit,
header.gas_used,
header.timestamp,
header.extra_data,
)
return rlp.rlp_hash(header_data_without_pow_artefacts)
def validate_proof_of_work(header: Header) -> None:
"""
Validates the Proof of Work constraints.
In order to verify that a miner's proof-of-work is valid for a block, a
``mix-digest`` and ``result`` are calculated using the ``hashimoto_light``
hash function. The mix digest is a hash of the header and the nonce that
is passed through and it confirms whether or not proof-of-work was done
on the correct block. The result is the actual hash value of the block.
Parameters
----------
header :
Header of interest.
"""
header_hash = generate_header_hash_for_pow(header)
# TODO: Memoize this somewhere and read from that data instead of
# calculating cache for every block validation.
cache = generate_cache(header.number)
mix_digest, result = hashimoto_light(
header_hash, header.nonce, cache, dataset_size(header.number)
)
if mix_digest != header.mix_digest:
raise InvalidBlock
limit = Uint(U256.MAX_VALUE) + Uint(1)
if Uint.from_be_bytes(result) > (limit // header.difficulty):
raise InvalidBlock
def check_transaction(
tx: Transaction,
gas_available: Uint,
) -> Address:
"""
Check if the transaction is includable in the block.
Parameters
----------
tx :
The transaction.
gas_available :
The gas remaining in the block.
Returns
-------
sender_address :
The sender of the transaction.
Raises
------
InvalidBlock :
If the transaction is not includable.
"""
if tx.gas > gas_available:
raise InvalidBlock
sender_address = recover_sender(tx)
return sender_address
def make_receipt(
tx: Transaction,
post_state: Bytes32,
cumulative_gas_used: Uint,
logs: Tuple[Log, ...],
) -> Receipt:
"""
Make the receipt for a transaction that was executed.
Parameters
----------
tx :
The executed transaction.
post_state :
The state root immediately after this transaction.
cumulative_gas_used :
The total gas used so far in the block after the transaction was
executed.
logs :
The logs produced by the transaction.
Returns
-------
receipt :
The receipt for the transaction.
"""
receipt = Receipt(
post_state=post_state,
cumulative_gas_used=cumulative_gas_used,
bloom=logs_bloom(logs),
logs=logs,
)
return receipt
@dataclass
class ApplyBodyOutput:
"""
Output from applying the block body to the present state.
Contains the following:
block_gas_used : `ethereum.base_types.Uint`
Gas used for executing all transactions.
transactions_root : `ethereum.fork_types.Root`
Trie root of all the transactions in the block.
receipt_root : `ethereum.fork_types.Root`
Trie root of all the receipts in the block.
block_logs_bloom : `Bloom`
Logs bloom of all the logs included in all the transactions of the
block.
state_root : `ethereum.fork_types.Root`
State root after all transactions have been executed.
"""
block_gas_used: Uint
transactions_root: Root
receipt_root: Root
block_logs_bloom: Bloom
state_root: Root
def apply_body(
state: State,
block_hashes: List[Hash32],
coinbase: Address,
block_number: Uint,
block_gas_limit: Uint,
block_time: U256,
block_difficulty: Uint,
transactions: Tuple[Transaction, ...],
ommers: Tuple[Header, ...],
) -> ApplyBodyOutput:
"""
Executes a block.
Many of the contents of a block are stored in data structures called
tries. There is a transactions trie which is similar to a ledger of the
transactions stored in the current block. There is also a receipts trie
which stores the results of executing a transaction, like the post state
and gas used. This function creates and executes the block that is to be
added to the chain.
Parameters
----------
state :
Current account state.
block_hashes :
List of hashes of the previous 256 blocks in the order of
increasing block number.
coinbase :
Address of account which receives block reward and transaction fees.
block_number :
Position of the block within the chain.
block_gas_limit :
Initial amount of gas available for execution in this block.
block_time :
Time the block was produced, measured in seconds since the epoch.
block_difficulty :
Difficulty of the block.
transactions :
Transactions included in the block.
ommers :
Headers of ancestor blocks which are not direct parents (formerly
uncles.)
Returns
-------
apply_body_output : `ApplyBodyOutput`
Output of applying the block body to the state.
"""
gas_available = block_gas_limit
transactions_trie: Trie[Bytes, Optional[Transaction]] = Trie(
secured=False, default=None
)
receipts_trie: Trie[Bytes, Optional[Receipt]] = Trie(
secured=False, default=None
)
block_logs: Tuple[Log, ...] = ()
for i, tx in enumerate(transactions):
trie_set(transactions_trie, rlp.encode(Uint(i)), tx)
sender_address = check_transaction(tx, gas_available)
env = vm.Environment(
caller=sender_address,
origin=sender_address,
block_hashes=block_hashes,
coinbase=coinbase,
number=block_number,
gas_limit=block_gas_limit,
gas_price=tx.gas_price,
time=block_time,
difficulty=block_difficulty,
state=state,
traces=[],
)
gas_used, logs = process_transaction(env, tx)
gas_available -= gas_used
receipt = make_receipt(
tx, state_root(state), (block_gas_limit - gas_available), logs
)
trie_set(
receipts_trie,
rlp.encode(Uint(i)),
receipt,
)
block_logs += logs
pay_rewards(state, block_number, coinbase, ommers)
block_gas_used = block_gas_limit - gas_available
block_logs_bloom = logs_bloom(block_logs)
return ApplyBodyOutput(
block_gas_used,
root(transactions_trie),
root(receipts_trie),
block_logs_bloom,
state_root(state),
)
def validate_ommers(
ommers: Tuple[Header, ...], block_header: Header, chain: BlockChain
) -> None:
"""
Validates the ommers mentioned in the block.
An ommer block is a block that wasn't canonically added to the
blockchain because it wasn't validated as fast as the canonical block
but was mined at the same time.
To be considered valid, the ommers must adhere to the rules defined in
the Ethereum protocol. The maximum amount of ommers is 2 per block and
there cannot be duplicate ommers in a block. Many of the other ommer
constraints are listed in the in-line comments of this function.
Parameters
----------
ommers :
List of ommers mentioned in the current block.
block_header:
The header of current block.
chain :
History and current state.
"""
block_hash = rlp.rlp_hash(block_header)
if rlp.rlp_hash(ommers) != block_header.ommers_hash:
raise InvalidBlock
if len(ommers) == 0:
# Nothing to validate
return
# Check that each ommer satisfies the constraints of a header
for ommer in ommers:
if Uint(1) > ommer.number or ommer.number >= block_header.number:
raise InvalidBlock
ommer_parent_header = chain.blocks[
-(block_header.number - ommer.number) - 1
].header
validate_header(ommer, ommer_parent_header)
if len(ommers) > 2:
raise InvalidBlock
ommers_hashes = [rlp.rlp_hash(ommer) for ommer in ommers]
if len(ommers_hashes) != len(set(ommers_hashes)):
raise InvalidBlock
recent_canonical_blocks = chain.blocks[-(MAX_OMMER_DEPTH + Uint(1)) :]
recent_canonical_block_hashes = {
rlp.rlp_hash(block.header) for block in recent_canonical_blocks
}
recent_ommers_hashes: Set[Hash32] = set()
for block in recent_canonical_blocks:
recent_ommers_hashes = recent_ommers_hashes.union(
{rlp.rlp_hash(ommer) for ommer in block.ommers}
)
for ommer_index, ommer in enumerate(ommers):
ommer_hash = ommers_hashes[ommer_index]
if ommer_hash == block_hash:
raise InvalidBlock
if ommer_hash in recent_canonical_block_hashes:
raise InvalidBlock
if ommer_hash in recent_ommers_hashes:
raise InvalidBlock
# Ommer age with respect to the current block. For example, an age of
# 1 indicates that the ommer is a sibling of previous block.
ommer_age = block_header.number - ommer.number
if Uint(1) > ommer_age or ommer_age > MAX_OMMER_DEPTH:
raise InvalidBlock
if ommer.parent_hash not in recent_canonical_block_hashes:
raise InvalidBlock
if ommer.parent_hash == block_header.parent_hash:
raise InvalidBlock
def pay_rewards(
state: State,
block_number: Uint,
coinbase: Address,
ommers: Tuple[Header, ...],
) -> None:
"""
Pay rewards to the block miner as well as the ommers miners.
The miner of the canonical block is rewarded with the predetermined
block reward, ``BLOCK_REWARD``, plus a variable award based off of the
number of ommer blocks that were mined around the same time, and included
in the canonical block's header. An ommer block is a block that wasn't
added to the canonical blockchain because it wasn't validated as fast as
the accepted block but was mined at the same time. Although not all blocks
that are mined are added to the canonical chain, miners are still paid a
reward for their efforts. This reward is called an ommer reward and is
calculated based on the number associated with the ommer block that they
mined.
Parameters
----------
state :
Current account state.
block_number :
Position of the block within the chain.
coinbase :
Address of account which receives block reward and transaction fees.
ommers :
List of ommers mentioned in the current block.
"""
ommer_count = U256(len(ommers))
miner_reward = BLOCK_REWARD + (ommer_count * (BLOCK_REWARD // U256(32)))
create_ether(state, coinbase, miner_reward)
for ommer in ommers:
# Ommer age with respect to the current block.
ommer_age = U256(block_number - ommer.number)
ommer_miner_reward = ((U256(8) - ommer_age) * BLOCK_REWARD) // U256(8)
create_ether(state, ommer.coinbase, ommer_miner_reward)
def process_transaction(
env: vm.Environment, tx: Transaction
) -> Tuple[Uint, Tuple[Log, ...]]:
"""
Execute a transaction against the provided environment.
This function processes the actions needed to execute a transaction.
It decrements the sender's account after calculating the gas fee and
refunds them the proper amount after execution. Calling contracts,
deploying code, and incrementing nonces are all examples of actions that
happen within this function or from a call made within this function.
Accounts that are marked for deletion are processed and destroyed after
execution.
Parameters
----------
env :
Environment for the Ethereum Virtual Machine.
tx :
Transaction to execute.
Returns
-------
gas_left : `ethereum.base_types.U256`
Remaining gas after execution.
logs : `Tuple[ethereum.blocks.Log, ...]`
Logs generated during execution.
"""
if not validate_transaction(tx):
raise InvalidBlock
sender = env.origin
sender_account = get_account(env.state, sender)
gas_fee = tx.gas * tx.gas_price
if sender_account.nonce != tx.nonce:
raise InvalidBlock
if Uint(sender_account.balance) < gas_fee + Uint(tx.value):
raise InvalidBlock
if sender_account.code != bytearray():
raise InvalidSenderError("not EOA")
gas = tx.gas - calculate_intrinsic_cost(tx)
increment_nonce(env.state, sender)
sender_balance_after_gas_fee = Uint(sender_account.balance) - gas_fee
set_account_balance(env.state, sender, U256(sender_balance_after_gas_fee))
message = prepare_message(
sender,
tx.to,
tx.value,
tx.data,
gas,
env,
)
output = process_message_call(message, env)
gas_used = tx.gas - output.gas_left
gas_refund = min(gas_used // Uint(2), Uint(output.refund_counter))
gas_refund_amount = (output.gas_left + gas_refund) * tx.gas_price
transaction_fee = (tx.gas - output.gas_left - gas_refund) * tx.gas_price
total_gas_used = gas_used - gas_refund
# refund gas
sender_balance_after_refund = get_account(
env.state, sender
).balance + U256(gas_refund_amount)
set_account_balance(env.state, sender, sender_balance_after_refund)
# transfer miner fees
coinbase_balance_after_mining_fee = get_account(
env.state, env.coinbase
).balance + U256(transaction_fee)
set_account_balance(
env.state, env.coinbase, coinbase_balance_after_mining_fee
)
for address in output.accounts_to_delete:
destroy_account(env.state, address)
return total_gas_used, output.logs
def validate_transaction(tx: Transaction) -> bool:
"""
Verifies a transaction.
The gas in a transaction gets used to pay for the intrinsic cost of
operations, therefore if there is insufficient gas then it would not
be possible to execute a transaction and it will be declared invalid.
Additionally, the nonce of a transaction must not equal or exceed the
limit defined in `EIP-2681 <https://eips.ethereum.org/EIPS/eip-2681>`_.
In practice, defining the limit as ``2**64-1`` has no impact because
sending ``2**64-1`` transactions is improbable. It's not strictly
impossible though, ``2**64-1`` transactions is the entire capacity of the
Ethereum blockchain at 2022 gas limits for a little over 22 years.
Parameters
----------
tx :
Transaction to validate.
Returns
-------
verified : `bool`
True if the transaction can be executed, or False otherwise.
"""
if calculate_intrinsic_cost(tx) > Uint(tx.gas):
return False
if tx.nonce >= U256(U64.MAX_VALUE):
return False
return True
def calculate_intrinsic_cost(tx: Transaction) -> Uint:
"""
Calculates the gas that is charged before execution is started.
The intrinsic cost of the transaction is charged before execution has
begun. Functions/operations in the EVM cost money to execute so this
intrinsic cost is for the operations that need to be paid for as part of
the transaction. Data transfer, for example, is part of this intrinsic
cost. It costs ether to send data over the wire and that ether is
accounted for in the intrinsic cost calculated in this function. This
intrinsic cost must be calculated and paid for before execution in order
for all operations to be implemented.
Parameters
----------
tx :
Transaction to compute the intrinsic cost of.
Returns
-------
verified : `ethereum.base_types.Uint`
The intrinsic cost of the transaction.
"""
data_cost = 0
for byte in tx.data:
if byte == 0:
data_cost += TX_DATA_COST_PER_ZERO
else:
data_cost += TX_DATA_COST_PER_NON_ZERO
return Uint(TX_BASE_COST + data_cost)
def recover_sender(tx: Transaction) -> Address:
"""
Extracts the sender address from a transaction.
The v, r, and s values are the three parts that make up the signature
of a transaction. In order to recover the sender of a transaction the two
components needed are the signature (``v``, ``r``, and ``s``) and the
signing hash of the transaction. The sender's public key can be obtained
with these two values and therefore the sender address can be retrieved.
Parameters
----------
tx :
Transaction of interest.
Returns
-------
sender : `ethereum.fork_types.Address`
The address of the account that signed the transaction.
"""
v, r, s = tx.v, tx.r, tx.s
if v != 27 and v != 28:
raise InvalidBlock
if U256(0) >= r or r >= SECP256K1N:
raise InvalidBlock
if U256(0) >= s or s >= SECP256K1N:
raise InvalidBlock
public_key = secp256k1_recover(r, s, v - U256(27), signing_hash(tx))
return Address(keccak256(public_key)[12:32])
def signing_hash(tx: Transaction) -> Hash32:
"""
Compute the hash of a transaction used in the signature.
The values that are used to compute the signing hash set the rules for a
transaction. For example, signing over the gas sets a limit for the
amount of money that is allowed to be pulled out of the sender's account.
Parameters
----------
tx :
Transaction of interest.
Returns
-------
hash : `ethereum.crypto.hash.Hash32`
Hash of the transaction.
"""
return keccak256(
rlp.encode(
(
tx.nonce,
tx.gas_price,
tx.gas,
tx.to,
tx.value,
tx.data,
)
)
)
def compute_header_hash(header: Header) -> Hash32:
"""
Computes the hash of a block header.
The header hash of a block is the canonical hash that is used to refer
to a specific block and completely distinguishes a block from another.
``keccak256`` is a function that produces a 256 bit hash of any input.
It also takes in any number of bytes as an input and produces a single
hash for them. A hash is a completely unique output for a single input.
So an input corresponds to one unique hash that can be used to identify
the input exactly.
Prior to using the ``keccak256`` hash function, the header must be
encoded using the Recursive-Length Prefix. See :ref:`rlp`.
RLP encoding the header converts it into a space-efficient format that
allows for easy transfer of data between nodes. The purpose of RLP is to
encode arbitrarily nested arrays of binary data, and RLP is the primary
encoding method used to serialize objects in Ethereum's execution layer.
The only purpose of RLP is to encode structure; encoding specific data
types (e.g. strings, floats) is left up to higher-order protocols.
Parameters
----------
header :
Header of interest.
Returns
-------
hash : `ethereum.crypto.hash.Hash32`
Hash of the header.
"""
return keccak256(rlp.encode(header))
def check_gas_limit(gas_limit: Uint, parent_gas_limit: Uint) -> bool:
"""
Validates the gas limit for a block.
The bounds of the gas limit, ``max_adjustment_delta``, is set as the
quotient of the parent block's gas limit and the
``GAS_LIMIT_ADJUSTMENT_FACTOR``. Therefore, if the gas limit that is
passed through as a parameter is greater than or equal to the *sum* of
the parent's gas and the adjustment delta then the limit for gas is too
high and fails this function's check. Similarly, if the limit is less
than or equal to the *difference* of the parent's gas and the adjustment
delta *or* the predefined ``GAS_LIMIT_MINIMUM`` then this function's
check fails because the gas limit doesn't allow for a sufficient or
reasonable amount of gas to be used on a block.
Parameters
----------
gas_limit :
Gas limit to validate.
parent_gas_limit :
Gas limit of the parent block.
Returns
-------
check : `bool`
True if gas limit constraints are satisfied, False otherwise.
"""
max_adjustment_delta = parent_gas_limit // GAS_LIMIT_ADJUSTMENT_FACTOR
if gas_limit >= parent_gas_limit + max_adjustment_delta:
return False
if gas_limit <= parent_gas_limit - max_adjustment_delta:
return False
if gas_limit < GAS_LIMIT_MINIMUM:
return False
return True
def calculate_block_difficulty(
block_number: Uint,
block_timestamp: U256,
parent_timestamp: U256,
parent_difficulty: Uint,
) -> Uint:
"""
Computes difficulty of a block using its header and
parent header.
The difficulty of a block is determined by the time the block was
created after its parent. If a block's timestamp is more than 13
seconds after its parent block then its difficulty is set as the
difference between the parent's difficulty and the
``max_adjustment_delta``. Otherwise, if the time between parent and
child blocks is too small (under 13 seconds) then, to avoid mass
forking, the block's difficulty is set to the sum of the delta and
the parent's difficulty.
Parameters
----------
block_number :
Block number of the block.
block_timestamp :
Timestamp of the block.
parent_timestamp :
Timestamp of the parent block.
parent_difficulty :
difficulty of the parent block.
Returns
-------
difficulty : `ethereum.base_types.Uint`
Computed difficulty for a block.
"""
max_adjustment_delta = parent_difficulty // Uint(2048)
if block_timestamp < parent_timestamp + U256(13):
difficulty = parent_difficulty + max_adjustment_delta
else: # block_timestamp >= parent_timestamp + 13
difficulty = parent_difficulty - max_adjustment_delta
# Historical Note: The difficulty bomb was not present in Ethereum at the
# start of Frontier, but was added shortly after launch. However since the
# bomb has no effect prior to block 200000 we pretend it existed from
# genesis.
# See https://github.com/ethereum/go-ethereum/pull/1588
num_bomb_periods = (int(block_number) // 100000) - 2
if num_bomb_periods >= 0:
difficulty += 2**num_bomb_periods
# Some clients raise the difficulty to `MINIMUM_DIFFICULTY` prior to adding
# the bomb. This bug does not matter because the difficulty is always much
# greater than `MINIMUM_DIFFICULTY` on Mainnet.
return max(difficulty, MINIMUM_DIFFICULTY)