-
Notifications
You must be signed in to change notification settings - Fork 3.7k
/
convert-pt-to-ggml.py
342 lines (310 loc) · 10.4 KB
/
convert-pt-to-ggml.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
# Convert Whisper transformer model from PyTorch to ggml format
#
# Usage: python convert-pt-to-ggml.py ~/.cache/whisper/medium.pt ~/path/to/repo/whisper/ ./models/whisper-medium
#
# You need to clone the original repo in ~/path/to/repo/whisper/
#
# git clone https://github.com/openai/whisper ~/path/to/repo/whisper/
#
# It is used to various assets needed by the algorithm:
#
# - tokenizer
# - mel filters
#
# Also, you need to have the original models in ~/.cache/whisper/
# See the original repo for more details.
#
# This script loads the specified model and whisper assets and saves them in ggml format.
# The output is a single binary file containing the following information:
#
# - hparams
# - mel filters
# - tokenizer vocab
# - model variables
#
# For each variable, write the following:
#
# - Number of dimensions (int)
# - Name length (int)
# - Dimensions (int[n_dims])
# - Name (char[name_length])
# - Data (float[n_dims])
#
import io
import os
import sys
import struct
import json
import code
import torch
import numpy as np
import base64
from pathlib import Path
#from transformers import GPTJForCausalLM
#from transformers import GPT2TokenizerFast
# ref: https://github.com/openai/whisper/blob/8cf36f3508c9acd341a45eb2364239a3d81458b9/whisper/tokenizer.py#L10-L110
#LANGUAGES = {
# "en": "english",
# "zh": "chinese",
# "de": "german",
# "es": "spanish",
# "ru": "russian",
# "ko": "korean",
# "fr": "french",
# "ja": "japanese",
# "pt": "portuguese",
# "tr": "turkish",
# "pl": "polish",
# "ca": "catalan",
# "nl": "dutch",
# "ar": "arabic",
# "sv": "swedish",
# "it": "italian",
# "id": "indonesian",
# "hi": "hindi",
# "fi": "finnish",
# "vi": "vietnamese",
# "iw": "hebrew",
# "uk": "ukrainian",
# "el": "greek",
# "ms": "malay",
# "cs": "czech",
# "ro": "romanian",
# "da": "danish",
# "hu": "hungarian",
# "ta": "tamil",
# "no": "norwegian",
# "th": "thai",
# "ur": "urdu",
# "hr": "croatian",
# "bg": "bulgarian",
# "lt": "lithuanian",
# "la": "latin",
# "mi": "maori",
# "ml": "malayalam",
# "cy": "welsh",
# "sk": "slovak",
# "te": "telugu",
# "fa": "persian",
# "lv": "latvian",
# "bn": "bengali",
# "sr": "serbian",
# "az": "azerbaijani",
# "sl": "slovenian",
# "kn": "kannada",
# "et": "estonian",
# "mk": "macedonian",
# "br": "breton",
# "eu": "basque",
# "is": "icelandic",
# "hy": "armenian",
# "ne": "nepali",
# "mn": "mongolian",
# "bs": "bosnian",
# "kk": "kazakh",
# "sq": "albanian",
# "sw": "swahili",
# "gl": "galician",
# "mr": "marathi",
# "pa": "punjabi",
# "si": "sinhala",
# "km": "khmer",
# "sn": "shona",
# "yo": "yoruba",
# "so": "somali",
# "af": "afrikaans",
# "oc": "occitan",
# "ka": "georgian",
# "be": "belarusian",
# "tg": "tajik",
# "sd": "sindhi",
# "gu": "gujarati",
# "am": "amharic",
# "yi": "yiddish",
# "lo": "lao",
# "uz": "uzbek",
# "fo": "faroese",
# "ht": "haitian creole",
# "ps": "pashto",
# "tk": "turkmen",
# "nn": "nynorsk",
# "mt": "maltese",
# "sa": "sanskrit",
# "lb": "luxembourgish",
# "my": "myanmar",
# "bo": "tibetan",
# "tl": "tagalog",
# "mg": "malagasy",
# "as": "assamese",
# "tt": "tatar",
# "haw": "hawaiian",
# "ln": "lingala",
# "ha": "hausa",
# "ba": "bashkir",
# "jw": "javanese",
# "su": "sundanese",
#}
## ref: https://github.com/openai/whisper/blob/8cf36f3508c9acd341a45eb2364239a3d81458b9/whisper/tokenizer.py#L273-L292
#def build_tokenizer(path_to_whisper_repo: str, name: str = "gpt2"):
# os.environ["TOKENIZERS_PARALLELISM"] = "false"
# path = os.path.join(path_to_whisper_repo, "whisper/assets", name)
# tokenizer = GPT2TokenizerFast.from_pretrained(path)
#
# specials = [
# "<|startoftranscript|>",
# *[f"<|{lang}|>" for lang in LANGUAGES.keys()],
# "<|translate|>",
# "<|transcribe|>",
# "<|startoflm|>",
# "<|startofprev|>",
# "<|nocaptions|>",
# "<|notimestamps|>",
# ]
#
# tokenizer.add_special_tokens(dict(additional_special_tokens=specials))
# return tokenizer
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a signficant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8+n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
if len(sys.argv) < 4:
print("Usage: convert-pt-to-ggml.py model.pt path-to-whisper-repo dir-output [use-f32]\n")
sys.exit(1)
fname_inp = Path(sys.argv[1])
dir_whisper = Path(sys.argv[2])
dir_out = Path(sys.argv[3])
# try to load PyTorch binary data
try:
model_bytes = open(fname_inp, "rb").read()
with io.BytesIO(model_bytes) as fp:
checkpoint = torch.load(fp, map_location="cpu")
except Exception:
print("Error: failed to load PyTorch model file:" , fname_inp)
sys.exit(1)
hparams = checkpoint["dims"]
print("hparams:", hparams)
list_vars = checkpoint["model_state_dict"]
#print(list_vars['encoder.positional_embedding'])
#print(list_vars['encoder.conv1.weight'])
#print(list_vars['encoder.conv1.weight'].shape)
# load mel filters
n_mels = hparams["n_mels"]
with np.load(dir_whisper / "whisper" / "assets" / "mel_filters.npz") as f:
filters = torch.from_numpy(f[f"mel_{n_mels}"])
#print (filters)
#code.interact(local=locals())
# load tokenizer
# for backwards compatibility, also check for older hf_transformers format tokenizer files
# old format: dir_whisper/whisper/assets/[multilingual/gpt2]/vocab.json
# new format: dir_whisper/whisper/assets/[multilingual/gpt2].tiktoken
multilingual = hparams["n_vocab"] >= 51865
tokenizer = dir_whisper / "whisper" / "assets" / (multilingual and "multilingual.tiktoken" or "gpt2.tiktoken")
tokenizer_type = "tiktoken"
if not tokenizer.is_file():
tokenizer = dir_whisper / "whisper" / "assets" / (multilingual and "multilingual" or "gpt2") / "vocab.json"
tokenizer_type = "hf_transformers"
if not tokenizer.is_file():
print("Error: failed to find either tiktoken or hf_transformers tokenizer file:", tokenizer)
sys.exit(1)
byte_encoder = bytes_to_unicode()
byte_decoder = {v:k for k, v in byte_encoder.items()}
if tokenizer_type == "tiktoken":
with open(tokenizer, "rb") as f:
contents = f.read()
tokens = {base64.b64decode(token): int(rank) for token, rank in (line.split() for line in contents.splitlines() if line)}
elif tokenizer_type == "hf_transformers":
with open(tokenizer, "r", encoding="utf8") as f:
_tokens_raw = json.load(f)
if '<|endoftext|>' in _tokens_raw:
# ensures exact same model as tokenizer_type == tiktoken
# details: https://github.com/ggerganov/whisper.cpp/pull/725
del _tokens_raw['<|endoftext|>']
tokens = {bytes([byte_decoder[c] for c in token]): int(idx) for token, idx in _tokens_raw.items()}
# output in the same directory as the model
fname_out = dir_out / "ggml-model.bin"
# use 16-bit or 32-bit floats
use_f16 = True
if len(sys.argv) > 4:
use_f16 = False
fname_out = dir_out / "ggml-model-f32.bin"
fout = fname_out.open("wb")
fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
fout.write(struct.pack("i", hparams["n_vocab"]))
fout.write(struct.pack("i", hparams["n_audio_ctx"]))
fout.write(struct.pack("i", hparams["n_audio_state"]))
fout.write(struct.pack("i", hparams["n_audio_head"]))
fout.write(struct.pack("i", hparams["n_audio_layer"]))
fout.write(struct.pack("i", hparams["n_text_ctx"]))
fout.write(struct.pack("i", hparams["n_text_state"]))
fout.write(struct.pack("i", hparams["n_text_head"]))
fout.write(struct.pack("i", hparams["n_text_layer"]))
fout.write(struct.pack("i", hparams["n_mels"]))
fout.write(struct.pack("i", use_f16))
# write mel filters
fout.write(struct.pack("i", filters.shape[0]))
fout.write(struct.pack("i", filters.shape[1]))
for i in range(filters.shape[0]):
for j in range(filters.shape[1]):
fout.write(struct.pack("f", filters[i][j]))
# write tokenizer
fout.write(struct.pack("i", len(tokens)))
for key in tokens:
fout.write(struct.pack("i", len(key)))
fout.write(key)
for name in list_vars.keys():
data = list_vars[name].squeeze().numpy()
print("Processing variable: " , name , " with shape: ", data.shape)
# reshape conv bias from [n] to [n, 1]
if name in ["encoder.conv1.bias", "encoder.conv2.bias"]:
data = data.reshape(data.shape[0], 1)
print(f" Reshaped variable: {name} to shape: ", data.shape)
n_dims = len(data.shape)
# looks like the whisper models are in f16 by default
# so we need to convert the small tensors to f32 until we fully support f16 in ggml
# ftype == 0 -> float32, ftype == 1 -> float16
ftype = 1
if use_f16:
if n_dims < 2 or \
name == "encoder.conv1.bias" or \
name == "encoder.conv2.bias" or \
name == "encoder.positional_embedding" or \
name == "decoder.positional_embedding":
print(" Converting to float32")
data = data.astype(np.float32)
ftype = 0
else:
data = data.astype(np.float32)
ftype = 0
#if name.startswith("encoder"):
# if name.endswith("mlp.0.weight") or \
# name.endswith("mlp.2.weight"):
# print(" Transposing")
# data = data.transpose()
# header
str_ = name.encode('utf-8')
fout.write(struct.pack("iii", n_dims, len(str_), ftype))
for i in range(n_dims):
fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
fout.write(str_)
# data
data.tofile(fout)
fout.close()
print("Done. Output file: " , fname_out)
print("")